Supporting Information

Focused ion beam-fabricated high-performance electrodeposited nickelruthenium-ruthenium oxide nano-supercapacitor

Sudipta Biswas^a, Ahiud Morag^{b,c}, Nitzan Shauloff^a, Nitzan Maman^d, and Raz Jelinek^{a,d}*

^a Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel E-mail: razj@bgu.ac.il

^{b.}Center for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, Dresden 01069, Germany

^{c.}Department of Synthetic Materials and Functional Devices, Max-Planck Institute of Microstructure Physics, Halle 06120, Germany

^{d.}Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev Beer Sheva 8410501, Israel

Keywords: focused ion beam; nano-supercapacitors; AC line filters; nickel-ruthenium alloy; ruthenium

oxide

Previous works	Material	Scan rate (V s ⁻¹)	Performance	Cycling stability (%)	ESR (Ω cm²)	Year
[25]	MoTe ₂ (FIB)	0.01	7.33 mF cm ⁻²	95	0.035	2015
[26]	MXene/CNT (FIB)	0.5	0.035 mF cm ⁻²	80		2021
[35]	Ppy-CNT@rGO	0.1	33 mF cm ⁻²	89.3	.28	2023
[36]	nanoporous gold	1	1.5 mF cm ⁻²	92		2019
[37]	MXene, MWCNT	1	10 mF/cm ⁻²			2019
[38]	organohydrogel	0.2	1.5 mA cm ⁻² (0.15 mF cm ⁻²)		0.04	2023
This work	NiRuKI	10	10.5 mF cm ⁻²	94	0.047	
This work	NiRuKI	0.01	28.26 mF cm ⁻²			

Table 1: Comparison of electrochemical parameters in previous reports with the present work

Figure S1. SEM micrograph of cross-sectional view of as fabricated Ni electrode before electrodeposition of NiRu alloy.

Figure S2. A. CV comparison of the device deposited with (red curve)/without KI (black curve). **B.** SEM showing higher porosity in deposition with KI (ii) compared to deposition without KI (i) (scale-bar corresponds to $1 \mu m$).

Figure S3: Electrochemical oxidation of Ru. CV curves at different stages of the oxidation showing a mild change of the curve indicating partial oxidation of the Ru. With oxidation CV became more rectangular indication improvement in capacitance.

Figure S4: A single device on a silicon wafer where two connecting pads are visible.

Figure S5: **a.** Vertical cross-section of trench after FIB. **b-c.** Trench 1, 2, 3 created with FIB having varying width with fix FIB operational parameters (viz. beam size, operation current, acceleration voltage, dwell time, etc.). Trench 1, 2 and 3 are created with width 200 nm, 100 nm, 60 nm. This shows when we go for the trench width less 100 nm there is a chance of shorting between the electrode as at 3^{rd} trench, it do not penetrate the nonconducting SiO₂ surface. Also, at this lower trench width some shorting also appeared at top as encircled with yellow circle.

Figure S6: Cycle stability. Capacitance retention as a function of cycle number for NiRu/RuO₂ nano-device using CV measurements at a scan rate of 10 V s⁻¹ in a voltage window of 1 V with aqueous electrolyte.