Supplementary Materials for

High photopiezocatalytic energy conversion via effective charge separation and deformability in the asymmetric ternary heterojunction Bi₄Ti₃O₁₂/PPy/TiO₂

Jialin Zhuang^a, Lingchao Wang^a, Yingmo Hu^a*, Yechen Wang^a, Liping Lin^a, Jiaying Xiao^a, Yunfan Chen^a, Xiaowei Li^a, Huiqiang Liu^c, Qian Zhang^b*, Qi An^a*

a Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), 100083, China

b School of Resources and Environment Engineering, Shandong University of Technology, Zibo, China.

c School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, China.

* Corresponding author. E-mail: (Y.H.) <u>huyingmo@cugb.edu.cn</u>, (Q.Z.) <u>zq@sdut.edu.cn</u> and (Q.A.) <u>an@cugb.edu.cn</u>.

Supplementary Text

1. Experimental section

1.1 Synthesis and characterization of BTO, TiO₂, MoS₂ and BaTiO₃

 0.4 g of TiO_2 was added into 100 ml (CH₃CH₂CH₂CH₂)₄N(OH)·10H₂O to obtain a mixture with the concentration of 0.253 mol/L. The mixture was stirred for 15 days to become a milky white suspension.

Bi₃Ti₄O₁₂ nanosheets (BTO) were prepared according to the reported hydrothermal method¹. Specifically, 2.1 mmol of Ti(OC₄H₉)₄, 0.15 mol of NaOH, 2.8 mmol of Bi(NO₃)₃·5H₂O, and 0.1 mmol of C₁₈H₃₃NaO₂ were added into 30 ml ultrapure water and stirred 60 min. Afterwards, the mixture was transferred into a 50 mL sealed Teflon-lined autoclave and the solvothermal reaction was carried out at 180 °C for 15 h. The collected products were washed by ethyl ethanol and ultrapure water, and dried at 60 °C overnight. 0.2 g of BTO was added into 100 ml mixed solution of ethyl ethanol and water (by volume 1:1) and with ultrasonic treatment for 10 h.

 0.2 g of MoS_2 and 0.2 g of BaTiO_3 were added to 100 ml of a mixture of ethanol and water (1:1, v/v), respectively, and sonicated for 10 h to obtain suspension.

1.2 Piezo-photocatalytic dye degradation and H₂O₂ generation experiment

0.05 g samples (copper mesh (49 mg) and catalyst (1 mg), obtained by subtracting the mass of copper mesh after assembly from the mass of copper mesh before assembly) were dispersed in 20 ml Rhodamine solution (RhB, 20 mg/L), methyl orange (MO, 10 mg/L), methylene blue (MB, 20 mg/L) and tetracycline hydrochloride (TC, 20 mg/L). After 30 min of dark adsorption, with different stirring speed (400 rpm) or ultrasonic vibration of 240 W power, the samples was exposed to 300 W Xenon lamp illumination (light intensity is 1 kW/m²) to degrade RhB. Perform piezo-photocatalytic degradation for 2 h, and measure the absorbance of RhB every 30 min. In addition, when regulating the light intensity, the light intensity is set to 800, 1000 and 2000 W/m², respectively, and when regulating the ultrasound intensity, the ultrasound intensity is set to 120, 180, 240 and 300 W, respectively. In the experiment of regulating solution pH, solution pH was regulated by NaOH (1 M) and HCl (1 M) to obtain solutions with pH 3, 5, 7, 9 and 11, respectively.

0.05 g samples were dispersed in 20 ml ultrapure water. Under ultrasonic vibration and light illumination to generate H₂O₂. Use iodometry to determine the yield of H₂O₂ in the reaction process. 4 mL of the reaction suspension was taken out at an interval of 30 min and 500 μ L of it after centrifugation treatment was diluted 5 times and mixed with 50 μ L H₃₂Mo₇N₆O₂₈ solution with concentration of 0.01 M as well as 2 mL KI solution with concentration of 0.1 M. After reaction for 10 min, the absorbance intensity of the above mixture solution was recorded at 352 nm on an UV-Vis spectrophotometer to obtain the H₂O₂ concentration.

1.3 Calculation of d₃₃ intensity

The d_{33} intensity ratios of BTO/PPy/TiO₂ and BTO/TiO₂ were obtained by calculating the butterfly curve of PFM. The calculation formula is:

$$d_{33} = m \times \frac{a}{VAC}$$

m: the inverse of the slope of the curve of the vertical coordinate of the force curve multiplied by the sensitivity of the probe;

a: measured amplitude of oscillation;

VAC: voltage applied to the sample.

2 Results and discussion

Fig. S1. Lattice schematic of BTO and TiO_2 , structural formula and schematic of PPy. Applying stresses from a, b, and c axis directions respectively all lead to polarization of BTO².

Fig. S2. XPS N 1s of PPy and BTO/PPy/TiO₂, XPS Bi 4d of BTO BTO/PPy/TiO₂.

XRD (Cu K α radiation, $\lambda = 0.15418$ nm, Bruker D8) was applied to observe the phase structures of commercially purchased TiO₂ and BTO prepared by hydrothermal method. All the diffraction peaks of TiO₂ and BTO could be indexed to the hexagonal wurtzite phase of anatase TiO₂ (JCPDS Card No. 99-0008) and Bi₄Ti₃O₁₂ (JCPDS Card No. 35-0795), respectively.

Fig. S4. SEM and particle size of PPy

As shown in SEM PPy is in granular form. The particle size was counted based on the SEM image and most of the PPy had a particle size of 250-300 nm.

Fig. S5. SEM of BTO. BTO was in the form of nanocluster flower.

Fig. S6. AFM, thickness, and particle size of BTO.

The morphology and thickness of BTO after mechanical stripping were observed by AFM. The results show that the BTO was exfoliated into 2D nanosheets. The thickness and particle area distribution of the nanosheets were further counted, most BTO nanosheets had a thickness of 5-10 nm, and had a particle size of 0.1 μ m².

Fig. S7. butterfly amplitude loop and phase curve of BTO.

PFM tests were performed on the exfoliated BTO to detect its piezoelectric responsivity, and the BTO did not exhibit significantly separated phase curve and butterfly amplitude loop.

Fig. S8. SEM of TiO₂.

Fig. S9. AFM, thickness, and particle size of TiO₂.

The exfoliated TiO₂ was in the form of less-layered two-dimensional nanosheets as measured by AFM. The thickness and particle area distribution of the nanosheets were further counted, most TiO₂ nanosheets had a thickness of 5-10 nm, and had a particle size of $0.1 \,\mu\text{m}^2$.

Fig. S10. DOS of BTO and PPy/BTO.

Fig. S11. DOS of TiO₂ and PPy/TiO₂.

Fig. S12. UV-Vis absorption spectra of BTO/PPy/TiO₂ ($n = 1 \sim 10$).

The assembly process was monitored by UV-Vis spectrophotometer, and the gradual increase in absorbance with the increase in the number of assembled layers indicated that the components were successfully assembled onto the substrate surface. With the increase in the number of assembled layers (n), the absorbance reached its maximum value at n = 9 and was similar to the absorbance value at n = 8. With further assembly, when n = 10, catalyst detachment leads to a decrease in absorbance. In addition, previous studies have shown that the increase in the photogenerated carrier transfer paths with too many assembled layers results in unfavorable electron transfer to the catalyst surface and is not conducive to the utilization of the catalyst for light absorption. Therefore, the assembly of 8-layer was chosen for the experiment.

Fig. S13. SEM and elemental mapping images of BTO/PPy/TiO₂.

The results showed that PPy, TiO_2 and BTO were assembled to the surface of the copper mesh.

Fig. S14. Raman mapping of BTO/PPy/TiO₂, PPy/TiO₂ and PPy/BTO.

415, 520 and 650 cm⁻¹ corresponds to the Ti-O Raman vibrational peak. 1334 and 1590 cm⁻¹ correspond to the C-C and C=C Raman vibrational peaks of PPy.

Fig. S15. COMSOL simulation of surface forces on mesh substrates under agitation. (Legend from top to bottom: tangential velocity magnitude (m/s), pressure (Pa), body velocity magnitude (m/s).)

According to the relationship between linear velocity and rotational speed, a brief estimation of the velocity of the solution hitting the catalyst and the copper mesh is obtained according to the equation:

```
v = \omega * 2\pi r
```

When the rotational speed is 800 r/min, v=2 m/s. COMSOL simulations yielded a force of about 40 Pa on the surface of the copper mesh.

Fig. S16. COMSOL simulations were performed to calculate the surface forces on BTO/TiO₂ under stirring and the deformation of BTO/TiO₂ under different mechanical forces.

FES was set up in COMSOL Multiphysics[®]. In this model, the piezoelectric interface consists of a "Structural Mechanics Module" and an "Electrostatics Interface" coupled together by the multiphysical properties of the piezoelectric effect. The BTO $(200 \times 300 \times 10 \text{ nm})$, and TiO₂ $(200 \times 300 \times 10 \text{ nm})$ model is constructed based on AFM and SEM characterization. The stress on the surface of BTO/TiO₂ were obtained from FES calculations and references. FET simulation verifies that stirring causes much weak substrate deformation than ultrasonic treatment.

Fig. S17. First-order rate constant (k_{obs}) of different samples.

Fig. S18. C/C_0 cycle diagram of the BTO/PPy/TiO₂ under both ultrasonic and light.

Fig. S19. The degradation performance of MO, MB, and TC for $BTO/PPy/TiO_2$ through photopiezocatalysis.

electron transfer number	С	Ν	Н	0	Ti	Bi
0.8501	2.8365	-4.82	2.8336	-32.5066	16.998	14.658
Table S2. Bader charge a	nalysis of	f the PPy	y/TiO ₂ .			
electron transfer number	С	Ν	Н	0	Ti	
0.88784	2.8835	-4.8094	46 2.81	38 -58.01	56 57.1	28

Table S1. Bader charge analysis of the PPy/BTO.

 Table S3. Literature comparison of photopiezocatalysts for RhB degradation.

Photopizeocatalysts	Catalyst	Dye (RhB) /	Reaction conditions	Degradation	Ref.
	dosage	Concentration		rate	
BiVO _{4/} BiFeO ₃	100 mg	5 ppm, 50 ml	Ultrasonic: 180 W,	98% (120	3
			40 kHz	min)	
			Light: Xenon lamp		
			(λ>420 nm)		
KNbO ₃ /WO ₃	50 mg	10 ppm, 50 ml	Ultrasonic: 120 W,	98% (80	4
			40 kHz	min)	
			Light: Xenon lamp		
			210 W (780		
			nm>λ>400 nm)		
PVDF/TiO ₂ /CQDs	26.6 mg	20 ppm, 25	Longer Pump (24 mL	95.26%	5
		mL	min ⁻¹)	(100 min)	
			Light: Xenon lamp		
			300 W (λ>420 nm)		
BaTiO ₃ @TiO ₂	50 mg	30 ppm, 100	Ultrasonic: 200 W,	99.5% (75	6
		mL	45/ 80/100 kHz	min)	
			Light: Xenon lamp		
			300 W		
BaTiO ₃	50 mg	10 ppm, 50	Ultrasonic: 300 W, 40	About 85%	7
		mL	kHz	(60 min)	
			Light: Xenon lamp		
			300 W		
Se nanowires/Au	2 mg	2.5×10^{-3}	Ultrasonic: 100 W, 40	About 38%	8
		mg/L, 10 ml	kHz	(30 min)	
			Light: 1-sun (AM 1.5		
			G, 100 mW cm ⁻²)		

NaNbO ₃ /WO ₃	25 mg	10 ppm, 100	Ultrasonic: 180 W,	73.7% (120 ⁹
		mL	40 kHz	min)
			Light: Xenon lamp	
			300 W (λ>420 nm)	
This work	50 mg	20 ppm, 20	Ultrasonic: 240 W,	96% (120
BTO/PPy/TiO ₂	(including	mL	40 kHz	min)
	copper		Light: Xenon lamp	
	mesh, and		300 W (1000 W m ⁻²)	
	the mass			
	of the			
	catalysts			
	roughly			
	equels 1			
	mg)			

References

- 1C. Wang, F. Chen, C. Hu, T. Ma, Y. Zhang and H. Huang, *Chemical Engineering Journal*, 2022, **431**, 133930.
- 2S. C. Chang, P.-H. Chen, Y.-C. Chen and J. M. Wu, *International Journal of Hydrogen Energy*, 2024, **50**, 15–25.
- 3Q. Jing, Z. Liu, X. Cheng, C. Li, P. Ren, K. Guo, H. Yue, B. Xie, T. Li, Z. Wang and L. Shu, *Chemical Engineering Journal*, 2023, **464**, 142617.
- 4R. Huang, W. Cai, H. Zhang, Z. Wang, Q. Zhang, R. Gao, G. Chen, X. Deng, X. Lei, J. Dong, X. Liu and C. Fu, *Journal of Environmental Chemical Engineering*, 2023, 11, 110177.
- 5Z. Tian, Y. Xu, Q. Liu, X. Wu, S. Qin, J. Zhang, H. Wang, J. Li and Z. Cui, *Surfaces and Interfaces*, 2024, **46**, 104056.
- 6M. Kim, J. Kwon, H. J. Lee, K. S. Park, J. Kim, J. Kim, K. Baek, H. Yuan, J. K. Hyun, Y. S. Cho, J. Yeom and D. H. Kim, *Nano Energy*, 2022, **92**, 106702.
- 7Q. Xiao, L. Chen, Y. Xu, W. Feng and X. Qiu, *Applied Surface Science*, 2023, **619**, 156794.
- 8M. Kim, J. Kwon, H. J. Lee, K. S. Park, J. Kim, J. Kim, K. Baek, H. Yuan, J. K. Hyun, Y. S. Cho, J. Yeom and D. H. Kim, *Nano Energy*, 2023, **114**, 108680.
- 9X. Yan, S. Zhang, L. Pan, T. Ai, Z. Li and Y. Niu, *Inorganic Chemistry* Communications, 2023, **158**, 111510.