Supporting Information for

Bismuth-atom Electrocatalyst for a Stable and Economical Aqueous Zn-CO₂ Battery

Mahboob Alam ^{#a}, Jia Xu ^{#a}, Evan J. Hansen ^a, Ela Nurlaela ^b, Li Tao^a, Alexander R. Uhl

^b, Jian Liu ^{a*}

^a School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, British Columbia, V1V 1V7, Canada

^b Laboratory for Solar Energy and Fuels (LSEF), School of Engineering, The University of British Columbia, Kelowna, V1V 1V7 Canada

The authors make equal contributions to this paper.

*Corresponding author's E-mail: jian.liu@ubc.ca (J. Liu)

Experimental Section

Materials. Zinc(II) acetate dihydrate $(Zn(Ac)_2 \cdot 2H_2O, CAS No: 5970-45-6, \ge 98.0\%$ purity) was obtained from Ward's Science. N, N-dimethylformamide (DMF, C_3H_7NO , CAS No: 68-12-2) was sourced from Alfa Aesar. 2-Methylimidazole (2-MIM, $C_4H_6N_2$, CAS No: 693-98-1, $\ge 99.0\%$ purity) and bismuth nitrate pentahydrate (Bi(NO₃)₃·5H₂O, CAS No: 10035-06-0, 98.0\% purity) was acquired from Sigma-Aldrich. Sulphuric acid (H₂SO₄, CAS No: 7664-93-9, 95-98.0\% purity) was obtained from VWR. All of the chemical reagents were used as received without further purification.

Synthesis of NC. Under the typical procedure, 0.3 g $Zn(Ac)_2 \cdot 2H_2O$ was dissolved in 10 mL deionized water (DI), which was subsequently added into 10 mL DI containing 1.12 g of 2-MIM under ultrasonication for 10 minutes at room temperature. Subsequently, the Zn-ZIF was grown at room temperature for 24 h. The as-obtained precipitates were isolated from the solution using centrifugation, then washed with methanol three times and dried in a vacuum at 60 °C overnight. After drying, the Zn-ZIF precursors underwent heating at 900 °C for 2 hours with a heating rate of 5 °C min⁻¹ under an Ar flow. Subsequently, they were treated with 0.5 M H₂SO₄ for 4 hours under continuous stirring to produce the N-doped carbon matrix derived from Zn-ZIF (referred to as NC).

Synthesis of Bi-SAs/NC. First, 100 mg NC and 9.8 mg $Bi(NO_3)_3 \cdot 5H_2O$ were dissolved in 10 mL DMF. The solution was stirred for 2 h and dried under vacuum at 60 °C overnight (8 h). Next, the obtained black product was heated to 700 °C for 2 h at a heating rate of 5 °C min⁻¹ under Ar flow to obtain the final material, labeled Bi-SAs/NC.

Characterization Methods. The X-ray diffraction (XRD) experiments were carried out in Cu-K α radiation (λ = 1.5418 Å) at a scan rate of 4° min⁻¹. Scanning electron microscopy (SEM, Tescan Mira 3 XMU) and transmission electron microscopy (TEM, Tecnai F20) analysis were applied to study the morphologies and microstructure of samples. The X– ray photoelectron spectroscopy (XPS) measurements were done using a PHI 5700 ESCA System. The Raman spectra were acquired using a Bruker Sunterra II Raman spectrometer using a 6 mW laser with a wavelength of 532 nm.

Electrochemical characterization

A Biologic electrochemical workstation (model SP-150) was used to measure the electrocatalytic activity of the catalysts. Initially, a three-electrode, single-compartment cell made of Teflon was employed to test the activity of Bi-SAs/NC in neutral (N₂ saturated electrolyte) and CO₂RR conditions (CO₂ saturated electrolyte). The gas diffusion electrode (GDE Freudenberg H23C3, Model 1590044 at Fuel Cell Store ©) modified with electrocatalyst ink suspension (as Working electrode–WE), Pt wire (as counter electrode), and Ag/AgCl (as Reference Electrode–RF) were used in 0.5 M KHCO₃ (potassium hydrogen carbonate–99 to 100% / Thermo Scientific CAS 298-14-6) to collect the data. Double layer capacitance (C_{dl}) was calculated using Cyclic Voltammetry (CVs) at different scan rates.

The H-type cell consists of two glass compartments joined with a metal clamp. The anolyte and catholyte were separated using a NafionTM membrane (111 NafionTM) during the experimentation. Platinum mesh (as CE), Ag/AgCl (as RE) and GDE cut into a bell shape and modified with electrocatalysts (as WE) were applied with a 0.5 M KHCO₃ solution saturated with CO₂ (pH = 7.5). A mass flow controller (ALICAT scientific) was used to control the flow of CO₂ gas between 6 to 8 sccm.

To analyze the gaseous products, an H-type cell coupled with gas chromatography (Thermo scientific trace 1300 series) employed automatic injection at set potentials after an interval of 30 minutes. To address the limitation of run-off time in the continuous GC product detection, measurements were constrained to two per hour. The GC was equipped with a Pulsed Discharged Detector (PDD) and an oven set with a ramped temperature setting from 50 to 250 °C over 30 mins. The liquid products in the electrolyte were analyzed by *ex-situ* Nuclear Magnetic Resonance (Bruker AVII 600 MHz spectrometer) spectroscopy using ¹H-spectra with water suppression (Watergate W5 pulse sequence, 256 scans) after 3 hours of chronoamperometry testing at a constant potential of -0.99 V (*vs.* RHE). Following experimentation, the electrolyte (686 μ L of the 60 mL total) was combined with an internal standard *d*6-Dimethyl Sulfoxide (DMSO 34 μ L, Sigma Aldrich CAS: 2206-27-1) and D2O (80 μ L) for NMR testing.

The equation for gas
$$FE_{\%} = v_x \frac{z_i C_i F}{i} \times 100$$
 E1¹

Where *v* is the volume of gas leaving the H-type cell, $z_{i is}$ the number of electrons involved in the generation of product, C_i is the concentration of product under consideration, *F* is the Faraday constant, and *i* is the applied current.

The equation for liquid
$$FE_{\%} = V_{total} \times \frac{z_i C_i F}{C_{total}} \times 100$$
 E2¹

Where V_{total} is the total volume of collected electrolyte sample, C_{total} is the total charge required to generate the product, z_i is the number of electrons utilized to catalyze the product, C_i is the concentration of product calculated using NMR integrated data, and *F* is the faraday constant.

The equation for Liquid
$$C_i = \frac{I_i}{I_{std}} \times \frac{n_{std}}{n_i} C_{std}$$
 E3¹

Where I_i and I_{std} are the NMR integral of the compound and standard (DMSO), and n_i and n_{std} represent the number of protons in each of the compound and standard, respectively, used to calculate single product concentration.

Zn-CO₂ battery measurement

A custom cell arrangement consisting of two chambers separated by a NafionTM membrane (111 NafionTM) was used to construct the Zn-CO₂ battery. The electrocatalysts were drop cast onto GDE with an areal loading of 0.5 mg cm⁻² with a cathode area of 1 cm². The anode area was matched at 1 mA cm², using Zn foil (thickness = 100 µm) that was first cleaned with isopropanol. The anolyte chamber was filled with 1 M KOH + 0.2 M zinc acetate solution, the catholyte chamber was filled with a 0.5 M KHCO₃ solution, and the gas chamber on the cathode side was purged with CO₂ at 5 sccm. The CO₂ battery performance was tested using galvanic discharge and charge testing with a Biologic workstation (SP-150). The discharge and charge cycles were set to 20 mins (total 40 mins for 1 cycle) and the Linear Sweep Voltammetry (LSV) was screened at 10 mV s⁻¹ to produce the polarization curves.

Figures

Figure S1. SEM image of ZIF-8.

Figure S3. (a) XPS survey spectrum of Bi-SAs/NC; the high–resolution XPS spectra of (b) Bi 4*f*, (c) C 1*s*, and (d) N 1*s* from Bi-SAs/NC.

Figure S4. Electrochemical activity of Bi-SAs/NC towards CO₂RR measured in Differential Electrochemical cell emulating Zn-CO₂ system coupled with MS.

Figure S5. ¹H-NMR spectra of the 0.5 M KHCO₃ catholyte (a) purged with CO₂ (b) purged with N₂, containing expected liquid products after 3 h of chronoamperometry test at -0.99 V (*vs.* RHE) on GDE modified with Bi-SAs/NC

Figure S6. Raman spectra of Gas Diffusion Electrodes (GDE) modified with Bi-SAs/NC before (B4) the CO₂RR test, after (AF) CO₂RR test in H-type cell and after Zn-CO₂ battery discharge-charge cycling.

and (b) after cycling; Recycled Zn electrodes (c) before and (d) after cycling.

Figure S8 (a) The galvanic discharge and charge cycling of a Bi-SAs/NC modified gas diffusion electrode (GDE) at a current density of 0.5 mA cm⁻² using fresh Zn (cycling for 57 h) and recycled Zn (cycling for 67 h) as anode (b) Isolated galvanic discharging and charging cycling for Bi-SAs/NC showing differences between specific cycles(c) comparison of the discharge potential and efficiency of both reversible Zn-CO₂ batteries for 100 cycles.

Figure S9. Comparison of power densities against open circuit voltage towards nonprecious metal-based Zn-CO₂ batteries.

Tables

Elements	Content (at %) by XPS				
С	85.8				
N	6.2				
0	7.8				
Bi	0.2				

Tables S1. The elemental composition of the Bi-SAs/NC.

Tables S2. Zn-CO ₂ batterv	performance with those	reported electrocatalvsts.

Catalysts	Electrolyte	Discharge products	осv (V)	Power density (mW cm ⁻²)	Stability	Ref.
Bi-SAs/NC	0.5 M KHCO₃	HCOOH CH ₃ CH(OH) ₂ CH ₃ COOH	1.6 V	3.8 and 3.2 mW cm ⁻²	67 h	This work
Ni–N₄ sites	0.5M KHCO ₃	CO (g)	1.37 V	1.4 mW cm ⁻²	20 h	Nano-Micro Lett. 2020, 12, 108
Metal Bi with abundant defects	2M KHCO ₃ +0.02 HCOO ⁻	HCOOH (I)	1.3 V	1.2 mW cm ⁻²	22 h	Chem. Commun. 2022, 58, 3621
Ni and Fe single atoms inN-doped graphene	2M KCI	CO (g)	0.89 V	1.36 mW cm⁻²	90 h	Nat. Commun. 2021, 12, 4088
Bi nanoparticles in N- doped carbon	2M KHCO₃ +0.02 HCOOH	HCOOH (I)	2.23 V	1.4 mW cm ⁻²	20 h	Nano Energy 2022, 92, 106780
BiC/HCS	0.1 M KHCO ₃	HCOOH (I)	0.94 V	7.2 ± 0.5 mW cm ⁻²	10 h	Applied Catalysis B: Environmental 307 (2022) 121145
Cu–N ₂ on graphene matrix	0.5M KHCO ₃	CO (g)	1.7 V	0.6 mW cm ⁻²	40 h	Adv. Funct. Mater. 2020, 30, 1907658
Single Fe atom on B and N codoped carbon	0.8M KHCO ₃	CO (g)	0.51 V	1.2 mW cm ⁻²	27 h	Chem. Eng. J. 2022, 437, 135294
Fe-P@NCPs	0.1 M KHCO ₃	CO (g)	0.691 V	0.85 mW cm⁻²	168 h	Small. 2022, 18, 2104965
FeNC NSs-1000	0.5 M KHCO ₃	CO (g)	-	1.05 mW cm⁻²	30 h	Nano Energy. 113 (2023) 108568
BiPdC	0.1 M KHCO ₃ with 0.1 M HCOONa	HCOOH (I)	1.2 V	0.42 mW cm⁻²	45 h	ACS Appl.Nano Mater. 2022,5, 12387-12394
Ni–N ₃ –NCNFs	0.5 M KHCO ₃	CO (g)	-	1.05 mW cm⁻²	46 h	Adv. Funct. Mater.2021, 31, 2008146
Zn/NC NSs	0.5 M KHCO ₃	CO (g)	-	1.8 mW cm ⁻²	25 h	Angew.Chem.Int.Ed. 2022,61,e202111683
Fe1NC/S ₁ -1000	0.8 M KHCO ₃	CO (g)	0.727 V	0.6 mW cm ⁻²	25 h	Adv.Mater. 2020, 32, 2002430
Ni@N-C	0.5 M KHCO ₃	CO (g)	-	1.64 mW cm⁻²	43 h	Small 2023, 19, 2301128

References

1. H.-P. Iglesias van Montfort, S. Subramanian, E. Irtem, M. Sassenburg, M. Li, J. Kok, J. Middelkoop and T. Burdyny, *ACS Energy Letters*, 2023, **8**, 4156-4161.