Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

CoOOH/CdIn₂S₄ Film Photoanodes Driving Unbiased Tandem Cells towards Simultaneously Efficient Oxidation of Benzyl Alcohol and Selective Generation of

Ethanol from CO₂ Reduction

Yiqing Wei,^a Huichao He,^b* Shuyuan Yang,^c Yongcai Zhang,^d Xin Zhou,^c* Zhigang Zou ^{a, e} and Yong Zhou ^{a, e, f}*

^aNational Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), Nanjing University, Nanjing, 210093, Jiangsu, P. R. China.

^bSchool of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.

^cCollege of Environment and Chemical Engineering, Dalian University, Dalian, 116622, Liaoning, P. R. China.

^dSchool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R China.

^eSchool of Science and Engineering, The Chinese University of Hongkong (Shenzhen), Shenzhen, Guangdong 518172, P. R. China.

^fSchool of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R China.

*Corresponding authors. zhouyong1999@nju.edu.cn (Y. Zhou) hehuichao@cqust.edu.cn (H. Chao) zhouxin@dlu.edu.cn (X. Zhou)

Fig. S1 The XRD patterns of (a) $CdIn_2S_4$ and $CoOOH/CdIn_2S_4$, (b) CoOOH.

Fig. S2 TEM image of $CdIn_2S_4$ and $CoOOH/CdIn_2S_4$.

Fig. S3 XPS data collected from the CoOOH/CdIn $_2S_4$ sample.

Fig. S4 (a) LSV curves of CdIn₂S₄, CoOOH/CdIn₂S₄-30, CoOOH/CdIn₂S₄-45 and CoOOH/CdIn₂S₄-60 photoanode in benzyl alcohol aqueous electrolyte under AM 1.5 G irradiation; (b) Yield plots of CdIn₂S₄, CoOOH/CdIn₂S₄-30, CoOOH/CdIn₂S₄-45 and CoOOH/CdIn₂S₄-60 photoanode for the production of benzaldehyde in benzyl alcohol aqueous electrolyte.

Table S1 Yield and selectivity of photoanodes for the production of benzaldehyde and benzoic acid in benzyl alcohol aqueous

 electrolyte during 4 h of reaction.

Photoanode	Benzaldehyde (μmol cm ⁻²)	Benzoic acid (μmol cm ⁻²)	Selectivity for benzaldehyde
CdIn ₂ S ₄	14.28	7.49	65.59%
CoOOH/CdIn ₂ S ₄ -30	20.14	9.87	67.11%
CoOOH/CdIn ₂ S ₄ -45	53.28	0.46	99.14%
CoOOH/CdIn ₂ S ₄ -60	34.04	11.18	75.28%

Fig. S5 UV-vis light absorption spectra of $CdIn_2S_4$ and $CoOOH/CdIn_2S_4$ film.

		R _S	CPE_1	CPE_1			
			R_1	R ₂			
Sample	$R_s(\Omega)$	CPE ₁ -T	CPE ₁ -P	$R_1(\Omega)$	CPE ₂ -T	CPE ₂ -P	$R_2(\Omega)$
CdIn ₂ S ₄	24.39	1.47×10 ⁻⁴	0.51	538.10	2.56×10 ⁻⁵	0.91	8259
$CoOOH/Cd_2In_2S_4$	23.11	1.53×10 ⁻⁴	0.52	125.50	3.50×10 ⁻⁵	0.72	1929

Fig. S6 SEM, XRD and XPS for $\mathrm{Cu}_2\mathrm{O}$ film on Ni foam.

Product	Photoanode	Photocathode	External bias or not	Reference
C ₂ H ₅ OH	CoOOH/CdIn ₂ S ₄	Cu ₂ O	no	This work
НСООН	Ti/NtTiO ₂ /CuO	Cu ₂ O/GDL	no	ChemSusChem., 2019, 12, 4274.
СО	Si	Ag	yes	Nat Commun., 2022, 13, 7111.
CO, H ₂	IrO _x /a-Si	CoPc/CNT-C- CsFAPb(IBr) ₃	no	Adv. Energy Mater., 2020, 10, 2002105.
CO, H ₂	CH ₃ NH ₃ PbI ₃	ZnO@ZnTe@CdTe-Au	no	ACS Nano., 2016, 10, 6980.
НСООН	NiOOH/a-Fe ₂ O ₃	Bi/GaN/Si	yes	Nat Commun., 2023, 14, 1013.
НСООН	mTiO ₂	mITO	no	Nat Synth., 2022, 1, 77.
НСООН	PVK IOTiO ₂ FDH	BiVO ₄	no	Joule., 2021, 5, 2771.
СО, НСООН	BiVO ₄	Cu-In	yes	<i>Chem. Eng. J.</i> , 2019, 355, 1.
C ₂ H ₅ OH, C ₂ H ₄	Si	Cu	yes	Nat Commun., 2022, 13, 7111.
СН ₃ ОН, СН ₃ ОН, С ₂ Н ₅ ОН, СН ₃ СООН,	TNT	Pt/GA/CF	yes	Chem. Eng. J., 2017, 322, 22.

Table S3 The products in reported tandem PEC cells with Cu_2O cathode for CO_2 reduction.

Fig. S7 XPS spectra of CoOOH/CdIn $_2S_4$ photoanode before and after 4 h of testing.