Molecular Recognition-Induced Structural Flexibility in ZIF-71

J. Farrando-Perez,¹ A. Missyul,² A. Martín-Calvo,³ C. Abreu-Jauregui,¹ V. Ramírez-Cerezo,^{1,4} L. Daemen,⁵ Y.Q. Cheng,⁵ A.J. Ramirez-Cuesta,⁵ S. Calero,⁶ C. Carrillo-Carrión,⁷ J. Silvestre-Albero^{1,*}

¹Advanced Materials Laboratory, Department of Inorganic Chemistry-University Institute of Materials, University of Alicante, E-03690 San Vicente del Raspeig, Spain

²CELLS – ALBA Synchrotron, Cerdanyola del Vallés, Barcelona, Spain

³Center for Nanoscience and Sustainable Technologies (CNATS), Dpt. Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Seville, Spain

⁴Institut Laue-Langevin, 71 avenue des Martyrs, 38000, Grenoble, France

⁵Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

⁶Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands

⁷Institute of Chemical Research (IIQ), CSIC – University of Seville, 41092 Seville, Spain

SUPPORTING INFORMATION

Figures	Page
Figure S1. Simulated pore size distribution (PSD) for ZIF-71 and ZIF-72.	S3
Figure S2. Adsorption kinetic studies for (A) phenol and (B) chlorobenzene at 298 K in ZIF-71 sample.	S3
Figure S3. Simulated adsorption isotherms for phenol and chlorobenzene in ZIF-71 and ZIF-72.	S4
Figure S4. A Amplification of the OH and Cl distances in the two probes evaluated with the Cl groups in the ZIF-71 linker, and B Amplification of the intermolecular distances in equilibrium upon adsorption in ZIF-71.	S5
Figure S5. Immersion calorimetry measurements of ZIF-71 into (A) water, (B) a phenol/water solution, and (C) a chlorobenzene/water solution.	S6
Figure S6. Adsorption kinetic studies for (A) phenol and (B) chlorobenzene at 298 K in ZIF-71 sample under acidic conditions (pH 3.5 adjusted using a HCl solution). Average adsorption kinetics (data from Figure S2), obtained under non-modified pH conditions, have been added as a grey slashed line for the sake of comparison.	S7
Figure S7. Synchrotron X-ray powder diffraction patterns of ZIF-71 before and after the chlorobenzene and phenol adsorption tests under acidic	S7

conditions (beam energy 20 keV).	
Figure S8. Synchrotron X-ray powder diffraction patterns of ZIF-71 before and after the phenol adsorption tests (beam energy 30 keV). The used sample was submitted to a thermal treatment at 453 K to promote the phase transition. Low 2 Theta peaks in ZIF-71@phenol (ca. 1.2°) correspond to entrapped water.	S8
Figure S9. Synchrotron X-ray powder diffraction patterns of ZIF-71 before and after the chlorobenzene adsorption tests (beam energy 17.5 keV). The used sample was submitted to a thermal treatment at 453 K to promote the phase transition.	S9
Figure S10. Representative FESEM images of ZIF-71 after the phenol adsorption process, a subsequent drying and a heat treatment at 453 K.	S9
Figure S11. Synchrotron X-ray powder diffraction patterns of ZIF-71 before and after exposure to the vapors of an aqueous solution of phenol (50 ppm) (beam energy 20 keV).	S10
Figure S12. Rietveld refinement of the different SXRPD patterns obtained.	S11

Tables	Page
Table S1 : Lennard-Jones parameters and partial charges of the atoms from the structures. Different types of atoms were defined for a given element according to their chemical environment. The proposed labelling of atoms is shown below.	S12
Table S2. Henry coefficients and Heat of adsorption for the three probes	S12-
evaluated obtained from the GCMC simulations.	S13
Table S3 : Structural parameters calculated for ZIF-71 before (pristine) and after being applied in the phenol and chlorobenzene adsorption process. The amount of ZIF-72 determined from the Rietveld refinement is included for each specific case.	S13

FIGURES

Figure S1. Simulated pore size distribution (PSD) for ZIF-71 and ZIF-72.

Figure S2. Adsorption kinetic studies for (A) phenol and (B) chlorobenzene at 298 K in ZIF-71 sample.

Figure S3. Simulated adsorption isotherms for phenol and chlorobenzene in ZIF-71 and ZIF-72.

Figure S4. A Amplification of the OH and Cl distances in the two probes evaluated with the Cl groups in the ZIF-71 linker, and **B** Amplification of the intermolecular distances in equilibrium upon adsorption in ZIF-71.

Figure S5. Immersion calorimetry measurements of ZIF-71 into (A) water, (B) a phenol/water solution, and (C) a chlorobenzene/water solution.

Figure S6. Adsorption kinetic studies for (A) phenol and (B) chlorobenzene at 298 K in ZIF-71 sample under acidic conditions (pH 3.5 adjusted using a HCl solution). Average adsorption kinetics (data from Figure S2), obtained under non-modified pH conditions, have been added as a grey slashed line for the sake of comparison.

Figure S7. Synchrotron X-ray powder diffraction patterns of ZIF-71 before and after the chlorobenzene and phenol adsorption tests under acidic conditions (beam energy 20 keV).

Figure S8. Synchrotron X-ray powder diffraction patterns of ZIF-71 before and after the phenol adsorption tests (beam energy 30 keV). The used sample was submitted to a thermal treatment at 453 K to promote the phase transition. Low 2 Theta peaks in ZIF-71@phenol (ca. 1.2°) correspond to entrapped water.

Figure S9. Synchrotron X-ray powder diffraction patterns of ZIF-71 before and after the chlorobenzene adsorption tests (beam energy 17.5 keV). The used sample was submitted to a thermal treatment at 453 K to promote the phase transition.

Figure S10. Representative FESEM images of ZIF-71 after the phenol adsorption process, a subsequent drying and a heat treatment at 453 K.

Figure S11. Synchrotron X-ray powder diffraction patterns of ZIF-71 before and after exposure to the vapors of an aqueous solution of phenol (50 ppm) (beam energy 20 keV).

Dry ZIF-71

ZIF-71@H₂O

Figure S12. Rietveld refinement of the different SXRPD patterns obtained.

TABLES

Table S1: Lennard-Jones parameters and partial charges of the atoms from the structures. Different types of atoms were defined for a given element according to their chemical environment. The proposed labelling of atoms is shown below.

Atom Type	ε/k _B (K)	σ (Å)	charge (e ⁻)
Zn1	62.40	2.462	0.7

C1	52.84	3.431	0.0371
H1	22.14	2.571	0.049
N2	34.72	3.261	-0.19355
С3	52.84	3.431	0.0189
Cl4	114.23	3.517	-0.0434

Table S2. Henry coefficients and Heat of adsorption for the three probes evaluated obtained from the GCMC simulations.

Henry Coefficient (ml/kg/Pa)					
ZIF-71			ZIF-72		
phenol	chlorobenzene	water	phenol	chlorobenzene	water
1.10 ± 0.01	$\textbf{0.135} \pm \textbf{0.001}$	1.1·10 ⁻⁶ ±9.6·10 ⁻⁹	$1.0.10^{-95} \pm 4.10^{-95}$	$1.1 \cdot 10^{-142} \pm 4.6 \cdot 10^{-142}$	$1.2 \cdot 10^{-9} \pm 2 \cdot 10^{-11}$

Heat of Adsorption (kJ/mol)					
ZIF-71 ZIF-72			ZIF-72		
phenol	chlorobenzene	water	phenol	chlorobenzene	water
-66.63 ± 0.11	-61.49 ± 0.70	-13.89 ± 0.10	491 ± 30	780±57	-6.72 ± 0.06

Table S3: Structural parameters calculated for ZIF-71 before (pristine) and after being applied in the phenol and chlorobenzene adsorption process. The amount of ZIF-72 determined from the Rietveld refinement is included for each specific case.

Sample	ZIF-71		ZIF-72	
Compie	a, Å	wt.%%	a, Å	wt.%%
ZIF-71 dry	28.6387	100%	Not observed	
ZIF-71@phenol	28.6428	46.5	19.6513	53.5
ZIF-71@chlorobenzene	28.6304	100%	Not observed	