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Electrochemical Measurements

Linear sweep voltammetry (LSV), chronopotentiometry (CP), and 

electrochemical impedance (EIS) measurements were carried out in a 1.0 M KOH for 

the OER and HER, 1.0 M KOH+ 0.33 M urea for the UEOR, and 0.5 M Na2SO4+ 0.1 

M NaNO3 for NO3RR using CHI 760E workstation. To prepare the catalyst ink, 2.0 mg 

of the catalyst, 0.2 mL of H2O, 0.8 mL of C2H5OH and 5 μL of Nafion (5 wt%) solution 

were mixed and ultrasonicated for 30 min. All measurements were performed in a three-

electrode configuration at room temperature, using a saturated calomel electrode as the 

reference electrode and a platinum plate as the counter electrode. All potentials in this 

work were calibrated to the reversible hydrogen electrode (RHE).



Figure S1 (a) The XPS spectra of O 2p of NiS-NRs. (b) Fitted oxidation states of Ni 
for NiS-NRs, NiS-bulk, NiO, and Ni foil.

Figure S2 (a) The XRD pattern, (b) SEM image, (c) EDS maps, and (d) TG curve of 
the DMG-NiⅡ complex nanorods. (e) The XRD pattern and (f) SEM image of NiO 

nanorods.
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Figure S3 (a) The SEM image, (b) EDX maps, (c) XRD pattern, (d) XPS survey 
spectrum, (e) Ni 2p XPS spectrum, and (f) S 2p XPS spectrum of NiS-bulk.

Figure S4 (a) HER performance of NiO. (b) Nyquist plots of the NiS-NRs and NiS-
bulk in N2-saturated 1.0 M KOH electrolyte.

Figure S5 (a) the SEM image and (b) XRD pattern of NiS-NRs after HER stability test.



Figure S6 (a) LSV curves of NiS-bulk in N2-saturated 1.0 M KOH solution with and 
without 0.33 M urea at 10 mV s-1. (b) LSV curves of NiO in N2-saturated 1.0 M KOH 
solution with and without 0.33 M urea at 10 mV s-1.

Figure S7 CV curves of (a) NiS-NRs and (b) NiS-Bulk in N2-saturated 1.0 M KOH 
solution at different scan rates. 

Figure S8 (a) The SEM image of the NiS-NRs catalyst after the stability test. XPS 
spectra of (b) Ni 2p and (c) S 2p of NiS-NRs catalyst before and after stability test.
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Figure S9 Potential-dependent Faradaic efficiency of NH3 on NiS-NRs. 

Figure S10 (a) The SEM image of the NiS-NRs catalyst after NO3RR test. (b) XPS full-
scan survey spectrum of NiS-NRs after NO3RR test. (c) XPS spectra of Ni 2p of NiS-
NRs catalyst after NO3RR test.



Table S1 Comparison of the electrochemical performance of Ni-based electrocatalysts in UEOR.

Electrocatalysts Electrolyte
UEOR

j10 (V)

Urea electrolyzer

j10 (V)
Ref.

NiS nanorods 1.0 M KOH + 0.33 M Urea 1.37 1.41 This work

NiSe2/MoSe2 1.0 M KOH + 0.33 M Urea 1.34 1.44 1

NiSe 1.0 M KOH + 0.33 M Urea 1.40 1.47 2

NiS nanotube 1.0 M KOH + 0.33 M Urea 1.36 1.445 3

NiS@Ni-CNFs 1.0 M KOH + 0.33 M Urea 1.366 1.44 4

Fe-doped NiS-NiS2 1.0 M KOH + 0.33 M Urea 1.34 1.55 5

Ovac-V-Ni(OH)2 1.0 M KOH + 0.33 M Urea 1.38 1.50 6

Ir-NiFe-OH 1.0 M KOH + 0.33 M Urea 1.36 1.42 7

Fe-NiSe2 1.0 M KOH + 0.33 M Urea 1.38 1.45 2

Ni3S2-Ni3P/NF 1.0 M KOH + 0.33 M Urea 1.37 1.43 8



Table S2 Comparison of the electrochemical performance of Ni-based 
electrocatalysts in NO3RR

Electrocatalysts Electrolyte
Onset 

potential (V)

NH4 yield

(mmol h-1 mgcat
-1)

Ref.

NiS nanorods 0.5 M SO4
2-+0.1 M NO3

- -0.42 0.513 This work

Ni2P 0.5 M SO4
2-+0.05 M NO3

- -0.6 0.056 9

CuNi 0.1 M PBS + 0.5 mg mL-1 NO3
- -0.8 0.3659 10

CuNi solid

solution alloys
1 M KOH +0.1 M NO3

- 0.1 0.264 11

Cu/Ni- N-doped 

carbon
0.5 M SO4

2- + 0.1 mg mL-1 NO3
- -0.46 0.324 mmol h-1 cm-2 12

BCN@Ni 0.1 M KOH + 0.1 M NO3
- 0 0.1365 mmol h-1 cm-2 13

Cu0.25Ni0.25 1 M KOH + 0.075 M NO3
- 0.18 0.5496 mmol h-1 cm-2 14
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