Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Enhanced Thermal Conductivity and Reduced Thermal Resistance in Carbon Fiber-based Thermal Interface Materials with Vertically Aligned Structure

Zhenbang Zhang^{a,b}, Rongjie Yang^a, Yandong Wang^a, Kang Xu^a, Wen Dai^a, Jianxiang Zhang^a, Maohua Li^a, Linhong Li^a, Yingying Guo^a, Yue Qin^a, Boda Zhu^a, Yiwei Zhou^a, Xingye Wang^a, Tao Cai^{a,c}, Cheng-Te Lin^{a,c}, Kazuhito Nishimura^{a,c}, Hao Nan Li^{b, *}, Nan Jiang^{a,c, *}and Jinhong Yu^{a,c, *}

^a Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

^b Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China,

^c Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
*Corresponding author. E-mail: yujinhong@nimte.ac.cn

This file includes:

Supplementary Figures

Figure S1 Microstructure of various rolling thickness of single layer of composite with 73.68 wt% filler loading in top view.

Figure S2 Effect of rolling thickness of single layer of composite on thermal conductivity for VCB-73.68 wt% -X.

Figure S3 Adhesion test of VCB composite.

Figure S4 Preparation process of VCB composites and corresponding photos.

Figure S5 Optical photography of the VCB composite after sclicing.

Figure S6.Photographs of VCB composite in flat and bent states.

Figure S7 Characterization of carbon fiber (CF). (a) Opticial photography of CF. (b) SEM image of CF. (c) Microstructure of CF in cross-section view. (d) Statistical diagram of length distribution for CF. (e) XRD pattern of CF. (f) Raman spectrum of CF.

Figure S8 Characterization of hexagonal boron nitride (BN). (a) Opticial photography of BN. (b-c) SEM image of BN. (d) Statistical diagram of lateral size distribution for BN. (e) XRD pattern of BN. (f) Raman spectrum of BN.

Figure S9 Integral intensity of (002) crystal vs azimuth angle curves of VCB-73.68 wt%-X, VCB-73.68 wt%-Y and VCB-73.68 wt%-Z.

Figure S10 Compression stress-strain curve of VCB-73.68 wt%-X.

Figure S11 Deformation of VCB composites with increasing pressure.

Figure S12 Schematic of the ANSYS simulation models and the boundary conditions.

Figure S13 Schematic of the ANSYS simulation meshing models.

Figure S14 Surface topography of VCB -73.68 wt%-X and VCB -73.68 wt%-X-LM.

Supplementary Tables

Table S1 The parameters for calculating the through-plane thermal conductivity of PDMS

 and the VCB composites.

 Table S2 Comparison of thermal conductivity of our VCB composites with reported others CFs-TIMs.

 Table S3 Comparison of thermal conductivity and density between composites with

 carbon fiber-based, BN-based, and commercial TIMs as reported in the literature.

Table S4 Comparison of total thermal resistance and thermal conductivity between VCB-

73.68 wt%-X-LM and TIMs which reported in the literature.

Supplementary Figures and Tables

Figure S1 Microstructure of various rolling thickness of single layer of composite with 73.68 wt% filler loading in top view.

Figure S2 Effect of rolling thickness of single layer of composite on thermal conductivity for VCB-73.68 wt% -X.

Figure S3 Adhesion test of VCB composite.

Figure S4 Preparation process of VCB composites and corresponding photos.

Figure S5 Optical photography of the VCB composite after sclicing.

Figure S6.Photographs of VCB composite in flat and bent states.

Figure S7 Characterization of carbon fiber (CF). (a) Opticial photography of CF. (b) SEM image of CF. (c) Microstructure of CF in cross-section view. (d) Statistical diagram of length distribution for CF. (e) XRD pattern of CF. (f) Raman spectrum of CF.

Figure S8 Characterization of hexagonal boron nitride (BN). (a) Opticial photography of BN. (b-c) SEM image of BN. (d) Statistical diagram of lateral size distribution for BN. (e) XRD pattern of BN. (f) Raman spectrum of BN.

Figure S9 Integral intensity of (002) crystal vs azimuth angle curves of VCB-73.68 wt%-X, VCB-73.68 wt%-Y and VCB-73.68 wt%-Z.

Figure S10 Compression stress-strain curve of VCB-73.68 wt%-X.

Pressure increment

Figure S11 Deformation of VCB composites with increasing pressure.

Figure S12 Schematic of the ANSYS simulation models and the boundary conditions.

Figure S13 Schematic of the ANSYS simulation meshing models.

Figure S14 Surface topography of VCB -73.68 wt%-X and VCB -73.68 wt%-X-LM.

Sample	Thermal diffusivity	sivity Specific heat capacity		Thermal conductivity		
Sample	(mm ² s ⁻¹)	(J g ⁻¹ K ⁻¹)	(g cm ⁻³)	(W m ⁻¹ K ⁻¹)		
PDMS	0.11	1.52	1.03	0.16		
VCB-55 wt%-X	18.09 ± 0.23			25.67 ± 0.32		
VCB-55 wt%-Y	$\boldsymbol{6.13\pm0.21}$	1.10	1.29	8.71 ± 0.29		
VCB-55 wt%-Z	1.10 ± 0.01			1.55 ± 0.01		
VCB-60 wt%-X	19.07 ± 0.84			27.13 ± 1.20		
VCB-60 wt%-Y	7.41 ± 0.21	1.07	1.33	10.54 ± 0.30		
VCB-60 wt%-Z	1.13 ± 0.01			1.61 ± 0.01		
VCB-65 wt%-X	22.98 ± 1.07			32.82 ± 1.53		
VCB-65 wt%-Y	8.28 ± 0.33	1.05	1.36	11.83 ± 0.47		
VCB-65 wt%-Z	1.28 ± 0.01			1.83 ± 0.01		
VCB-70 wt%-X	26.84 ± 0.28			39.08 ± 0.41		
VCB-70 wt%-Y	9.87 ± 0.36	1.04	1.40	14.37 ± 0.53		
VCB-70 wt%-Z	1.30 ± 0.01			1.87 ± 0.01		
VCB-73.68 wt%-X	35.48 ± 1.10			51.90 ± 1.62		
VCB-73.68 wt%-Y	11.84 ± 1.04	1.03	1.42	17.32 ± 1.53		
VCB-73.68 wt%-Z	1.42 ± 0.01			2.07 ± 0.01		

Table S1 The parameters for calculating the through-plane thermal conductivity of PDMS and the VCB composites.

No.	Alignment technology	CF type	Matrix	Filler	Loading	K (Wm ⁻¹ K ⁻ ¹)	Ref.
1	Ice template	Milled fiber	Ероху	CF	13 vol%	2.82	1
2	Ice template	Milled fiber	PDMS	CF	12.8 wt%	6.04	2
3	Ice template	Milled fiber	Epoxy	CF	30.52 wt%	9.68	3
4	Electrostatic flocking	Milled fiber	Silicone rubber	CF- CNT	4.01 wt%	8.92	4
5	Electrostatic flocking	Milled fiber	AB resin	CF	13.4 wt%	15.3	5
6	Electrostatic flocking Milled fibe		FKM	FKM CF 13.2 v		23.3	6
7	Magnetic	Magnetic Milled fiber		CFs	9 vol%	4.72	7
8	Magnetic	Milled fiber	silicone rubber	CF/ Al ₂ O ₃	20 vol%/ 20 vol%	26.49	8
9	Magnetic	Milled fiber	PDMS	CF	47.3 wt%	45.01	9
10	3D printing	Milled fiber	PDMS	CF/ Al ₂ O ₃	12.1 wt%/ 78.8 wt%	21.29	10
11	3D printing	3D printing Milled fiber		CFs	60 wt%	35.22	11
12	3D printing Milled fiber		PDMS	CF/ Al ₂ O ₃	24 vol%/ 47 vol%	38	12
13	Pressing Continuous fiber		OBC	CF	20 wt%	5.63	13
14	Pre-array	Continuous fiber	PDMS	NiC O@	53.28 wt%	15.55	14
14				CFs	44.46 wt%	34.94	
15	Pre-array	Continuous fiber	PDMS	CF	20 vol%	43.47	15
16	Pie-Rolling	Milled fiber	PDMS	CF/Al	10.6wt%/ 74.4 wt%	10.46	16
17	Press-Rolling	Milled fiber	PDMS	CF/BN	73.68 wt%	51.9	This work

Table S2 Comparison of thermal conductivity of our VCB composites with reported others CFs-TIMs.

No.	Туре	Matrix	Filler	Filler loading	K (W∙m⁻ ¹∙K⁻¹)	ρ (g·cm ⁻ ³)	Ref	
1		OBC	CF	30 vol%	15.01	1.266	17	
2	CF	OBC/Paraffin wax	CF	20 wt%	5.63	1.03	13	
3	Uaseu	Epoxy	CF	49 wt%	32.12	1.48	18	
4		PDMS	CF	46.9 wt%	45.01	1.373	9	
5		Epoxy	BN flake/BN sphere	50 wt%	4.27	1.24	19	
6	BN based	PDMS	BN	27.05 vol%	5.134	1.534	20	
7		PTFE	BNNS	30 wt%	1.28	2.1	21	
8		PU	BNNS	80 vol%	11.5	1.77	22	
9		PVP	BN	62.6 vol%	12.1	1.3	23	
10		Silicone rubber	CF	-	40	2.4	Dexerials, EX20000C4S	
11	1 2 Comm ercial 3	Silicone rubber	CF	-	35	2.2	Dexerials, EX20000C9S	
12		Silicone rubber	CF	-	30	2.4	Dexerials, EX10000F7	
13		Silicone rubber	CF	-	25	2.6	Waretimo, WT5935C- 250-65	
14		Silicone rubber	CF	-	25	3.3	T-Globa, TG-AH25	
15	CF based	PDMS	CF	73.68 wt%	51.9	1.42	This work	

Table S3 Comparison of thermal conductivity and density between composites with carbon fiberbased, BN-based, and commercial TIMs as reported in the literature.

Table S4 Comparison of total thermal resistance and thermal conductivity between VCB-73.68 wt%-X-LM and TIMs which reported in the literature.

No.	Туре	Matrix	Filler	Filler loading	Tempe rature	mpe sure Press ure °C)	Thermal resistence	к	Dof
					(°C)		$(K \cdot cm^2 \cdot W^{-1})$	(W·m⁻ ¹·K⁻¹)	Kel.
1	Grease	Silicone oil	Graphene/ alumina	72 wt%	80	60 Psi	0.243	4.38	24
2	Grease	Silicone oil	AlN	74.8 wt%	-	50 Psi	0.962	1.55	25
3	PCM hydrogel	PEG	Graphene	7 wt%	80	50 psi	0.5	1.23	26
4	PCM hydrogel	ОР	Ag flake/ nAgMWNT	46 vol%/2.5 vol%	40	3 Mpa	0.305	43.4	27
5	Thermal Pad	Silicone ruber	Graphite/ carbon fiber	-	80	30 Psi	1.8	19.1	28
6	Thermal Pad	PDMS	Carbon fiber	20 vol%	-	20 Psi	0.6	43.47	15
7	Thermal Pad	Silicone ruber	BN	64.3 wt%	-	0.69 Mpa	0.39	1.01	29
8	Thermal Pad	PDMS	BN/LM	50 Vol%		18 Psi	2.53	3.2	30
9	Thermal Pad	PDMS	Diamond /LM	89.1 wt%		560 Kpa	0.38	29	31
10	Thermal Pad	PDMS	Carbon fiber/BN	73.68 wt%	80	100 Psi	0.26	51.9	This work

Supplementary References

- 1. J. Ma, T. Shang, L. Ren, Y. Yao, T. Zhang, J. Xie, B. Zhang, X. Zeng, R. Sun, J.-B. Xu and C.-P. Wong, *Chemical Engineering Journal*, 2020, **380**, 122550.
- 2. X. Hou, Y. Chen, W. Dai, Z. Wang, H. Li, C.-T. Lin, K. Nishimura, N. Jiang and J. Yu, *Chemical Engineering Journal*, 2019, **375**, 121921.
- 3. L. Guo, Z. Zhang, M. Li, R. Kang, Y. Chen, G. Song, S.-T. Han, C.-T. Lin, N. Jiang and J. Yu, *Composites Communications*, 2020, **19**, 134-141.
- 4. T. Ji, Y. Feng, M. Qin, S. Li, F. Zhang, F. Lv and W. Feng, *Carbon*, 2018, **131**, 149-159.
- 5. Z. Yu, S. Wei and J. Guo, *Journal of Materials Science: Materials in Electronics*, 2019, **30**, 10233-10243.
- 6. K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura and K. Hata, *Advanced Materials*, 2014, **26**, 5857-5862.
- 7. D. Ding, R. Huang, X. Wang, S. Zhang, Y. Wu, X.-a. Zhang, G. Qin, Z. Liu, Q. Zhang and Y. Chen, *Chemical Engineering Journal*, 2022, **441**, 136104.
- 8. Q. Wu, W. Li, C. Liu, Y. Xu, G. Li, H. Zhang, J. Huang and J. Miao, *Carbon*, 2022, **187**, 432-438.
- 9. S. Han, Y. Ji, Q. Zhang, H. Wu, S. Guo, J. Qiu and F. Zhang, *Nano-Micro Letters*, 2023, **15**, 146.
- 10. F. Huang, W. Qin, D. Shu, J. Sun, J. Li, D. Meng, W. Yue and C. Wang, *Ceramics International*, 2023, **49**, 32971-32978.
- Z. Zhang, M. Li, Y. Wang, W. Dai, L. Li, Y. Chen, X. Kong, K. Xu, R. Yang, P. Gong, J. Zhang, T. Cai, C.-T. Lin, K. Nishimura, H. N. Li, N. Jiang and J. Yu, *Journal of Materials Chemistry A*, 2023, 11, 10971-10983.
- 12. R. Huang, D. Ding, X. Guo, C. Liu, X. Li, G. Jiang, Y. Zhang, Y. Chen, W. Cai and X.a. Zhang, *Composites Science and Technology*, 2022, **230**, 109717.
- 13. P. Zhang, Y. Qiu, C. Ye and Q. Li, *Chemical Engineering Journal*, 2023, 461, 141940.
- Z. Zhang, J. Wang, J. Shang, Y. Xu, Y. J. Wan, Z. Lin, R. Sun and Y. Hu, *Small*, 2023, 19, e2205716.
- 15. J. Li, Z. Ye, P. Mo, Y. Pang, E. Gao, C. Zhang, G. Du, R. Sun and X. Zeng, *Composites Science and Technology*, 2023, **234**, 109948.
- 16. T. Jiao, B. Han, L. Zhao, Z. Zhang, Y. Zeng, D. Li, K. Zhang, Q. Deng, Y. Zhao and Z. Li, *Applied Surface Science*, 2023, **618**, 156711.
- 17. G. Zhang, S. Xue, F. Chen and Q. Fu, *Composites Science and Technology*, 2023, 231, 109784.
- 18. M. Li, Z. Ali, X. Wei, L. Li, G. Song, X. Hou, H. Do, J. C. Greer, Z. Pan, C.-T. Lin, N. Jiang and J. Yu, *Composites Part B: Engineering*, 2021, **208**, 108599.
- 19. W. Jang, S. Lee, N. R. Kim, H. Koo, J. Yu and C.-M. Yang, *Composites Part B: Engineering*, 2023, **248**, 110355.
- 20. C. Lei, Y. Zhang, D. Liu, X. Xu, K. Wu and Q. Fu, *Composites Science and Technology*, 2021, **214**, 108995.
- 21. L. Xu, K. Zhan, S. Ding, J. Zhu, M. Liu, W. Fan, P. Duan, K. Luo, B. Ding, B. Liu, Y. Liu, H. M. Cheng and L. Qiu, *ACS Nano*, 2023, **17**, 4886-4895.
- 22. N. Zhao, J. Li, W. Wang, W. Gao and H. Bai, ACS Nano, 2022, 16, 18959-18967.
- 23. H. He, W. Peng, J. Liu, X. Y. Chan, S. Liu, L. Lu and H. Le Ferrand, *Advanced Materials*, 2022, **34**, e2205120.
- 24. C. Chen, Y. He, C. Liu, H. Xie and W. Yu, *Journal of Materials Science: Materials in Electronics*, 2020, **31**, 4642-4649.
- 25. P. Luo, Y. Tuersun, X. Huang, H. Yang and S. Chu, *Advanced Engineering Materials*, 2023, **25**, 2301092.
- 26. J. Yang, W. Yu, C. Liu, H. Xie and H. Xu, Composites Science and Technology, 2022,

219, 109223.

- 27. S. A. Abdul Jaleel, T. Kim and S. Baik, Advanced Materials, 2023, 35, e2300956.
- 28. M. Li, L. Li, X. Hou, Y. Qin, G. Song, X. Wei, X. Kong, Z. Zhang, H. Do, J. C. Greer, F. Han, T. Cai, W. Dai, C.-T. Lin, N. Jiang and J. Yu, *Composites Science and Technology*, 2021, **212**.
- 29. Y. Ji, S.-D. Han, H. Wu, S.-Y. Guo, F.-S. Zhang and J.-H. Qiu, *Chinese Journal of Polymer Science*, 2023, DOI: 10.1007/s10118-023-3023-2.
- 30. Z. Wang, J. Li, N. Ye, H. Zhang, D. Yang and Y. Lu, *Composites Science and Technology*, 2023, **233**, 109903.
- 31. S. Wei, W. Wang, L. Zhou and J. Guo, *Composites Part A: Applied Science and Manufacturing*, 2022, **162**, 107149.