Supplementary information

22.43%-efficiency flexible modification-free perovskite solar cells with a uniform and anti-reflective ITO/SiO₂/PET/SiO₂ substrate

Jiwen Chen,^{a,b,‡} Xi Fan,^{*b,‡} Jia Li,^b Jinzhao Wang,^e Jixi Zeng,^b Wenqing Zhu^{*a} and Weijie Song^{*b,c,d}

^aSchool of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P.R. China.

^bNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China.

^cCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

^dResearch Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou, Zhejiang 311121, P.R. China.

^eSchool of Material Science and Engineering, Hubei University, Wuhan 430062, P.R. China.

*Correspondence: fanxi@nimte.ac.cn (X. F.); wqzhu@shu.edu.cn (W. Z.); weijiesong@nimte.ac.cn (W.J. S.)

‡ Jiwen Chen and Xi Fan contributed equally to this work.

Figure 1. Wettability characteristics of the MeO-2PACz droplets on these ITO transparent electrodes. Obviously, the droplets of MeO-2PACz showed a good wettability with a contact angle of ~24.3° on the surfaces of the α -ITO/SiO₂/PET/SiO₂, which is smaller than that (~27.4°) of the droplets on the surface of the β -ITO/SiO₂/PET/SiO₂. The smaller contact angle suggests a higher hydrophilic property of the α -ITO and an intimate contact at interfaces. The enhanced wettability is favorable for a better deposition of the MeO-2PACz HTLs. When the MeO-2PACz droplets were dipped on both γ - and δ -ITO, the droplets showed a comparable wettability with a small contact angle of ~22.6°. The results demonstrate an intimate interface contact between the MeO-2PACz and the γ - and δ -ITO electrodes.

Figure S2. J-V curves of the best flexible unmodified PSCs *via* a forward (FWD) scanning and the reverse (REV) scanning.

Figure S3. Performance distributions of the flexible PSCs with the different ITO-coated plastic substrates. A) V_{OC} , B) J_{SC} ; C) FF, and D) PCE.

Figure S4. EQE spectra of the flexible PSCs with the different ITO-coated plastic substrates.

Figure S5. J-V curves of the best flexible GBAc doped PSCs *via* forward scanning and reverse scanning.

Figure S6. Steady-state photocurrent and power output of the GBAc doped flexible PSCs with the α -ITO/SiO₂/PET/SiO₂.

Figure S7. The absorption spectra of the α - and δ -ITO based flexible devices without Ag metals.

Figure S8. The grain size distribution data of the perovskites on the different ITO-coated plastic substrates.

Device Structure	$V_{\rm OC}$	$J_{ m SC}$	FF	PCE	Refer.
	[V]	$[mA \ cm^{-2}]$	[%]	[%]	
SiO ₂ /PET/SiO ₂ /ITO/MeO-	1 10	25.14	91.16	22.42	Hana
$2PACz/Cs_{0.05}(FA_{0.98}MA_{0.02})_{0.95}Pb(I_{0.98}Br_{0.02})_3/C_{60}/BCP/Ag$	1.10	25.14	01.10	22.43	Here
$PET/ITO/DCPA/Cs_{0.05}(FA_{0.98}MA_{0.02})_{0.95}Pb(I_{0.98}Br_{0.02})_3/C_{60}/BCP/Ag$	1.10	24.24	79.45	21.11	1
$PET/ITO/PTAA/Cs_{0.05}(FA_{0.98}MA_{0.02})_{0.95}Pb(I_{0.98}Br_{0.02})_3/C_{60}/BCP/Ag$	1.10	24.95	76.38	20.96	2
$PET/PEDOT: PSS/PTAA/Cs_{0.05}(FA_{0.95}MA_{0.05})_{0.95}Pb(I_{0.95}Br_{0.05})_3/PCB$	1 1 2	24.00	76.00	21 12	2
M/BCP/Ag	1.12	24.90	/0.00	21.15	3
PEN/ITO/PTAA//FAyMA1-yPbI3-xClx/C60/BCP/Cu	1.05	21.86	77.42	17.77	4
SUPA/PEN/ITO/PTAA/MA _{0.6} FA _{0.4} PbI _{2.9} Br _{0.1} /C60/BCP/Cu	1.07	21.92	80.20	18.84	5
$PEN/ITO/UV\text{-NiO}_{x}/Cs_{0.05}FA_{0.85}MA_{0.1}PbI_{2.91}Br_{0.09}/C_{60}/BCP/Cu$	1.11	22.26	79.57	19.70	6
$PEN/ITO/PTAA/Cs_{0.15}FA_{0.85}Pb(I_{0.95}Br_{0.05})_3/PCBM/BCP/Ag$	1.15	22.55	80.50	20.90	7
PET/ITO/PTAA/MAPbI ₃ /C ₆₀ /BCP/Cu	1.16	21.98	79.11	20.17	8
$PEN/ITO/NiO_x/Cs_{0.1}FA_{0.7}MA_{0.2}PbI_xBr_{3-x}/PCBM/BCP/Ag$	1.09	22.09	79.28	19.01	9
$PEN/ITO/Cs_{0.3}(MA_{0.05}FA_{0.95})_{0.97}Pb(I_{0.95}Br_{0.05})_3/C_{60}/BCP/Cu$	1.07	23.22	74.90	18.59	10
PET/ITO/PTAA/MAPbI ₃ /C ₆₀ /BCP/Ag	1.07	22.40	72.00	17.27	11
$PEN/ITO/PTAA/Cs_{0.05}FA_{0.7}MA_{0.25}Pb(I_{0.93}Br_{0.07})_3/PCBM/BCP/Ag$	1.04	23.89	74.50	18.51	12
PEN/ITO/Spiro-TTBb/MAPbI ₃ /PCBM/BCP/Ag	1.10	21.70	81.19	19.34	13
$PEN/ITO/NiO_x/(FA_{0.83}MA_{0.17})_{0.95}Cs_{0.05}Pb(I_{0.9}Br_{0.1})_3/PCBM/BCP/Ag$	1.07	21.60	77.80	18.10	14
PET/ITO/CuPC/MAPbI ₃ /C ₆₀ /BCP/Ag	1.10	22.65	75.00	18.68	15
PEN/ITO/PEDOT:PSS/PTAA/MAPbI3/PCBM/BCP/Ag	1.09	21.98	81.00	19.41	16
PEN/ITO/NiO _x :PDA/MAPbI ₃ /PCBM/BCP/Ag	1.04	20.78	77.40	16.76	17
PET/ITO/NiO _x /FA _y MA _{1-y} PbI _{3-x} Cl _x /PCBM/BCP/Ag	1.06	22.23	73.00	17.23	18
PET/PEDOT:PSS(PH1000)/PTAA/MAPbI ₃ /C ₆₀ /BCP/Cu/parylene	0.96	22.45	79.00	17.03	19
$PET/ITO/NiO_x/Cs_{0.1}FA_{0.7}MA_{0.2}PbI_xBr_{3-x}/PCBM/BCP/Ag$	1.04	21.78	78.00	17.69	20

Table S1. Comparison of the PCEs of the processing-simple flexible PSCs without surface modifications and dopant incorporation.

References

1. Wu, S., Zhang, J., Qin, M., Li, F., Deng, X., Lu, X., Li, W., Alex, K.Y. (2023). Manipulating Crystallographic Orientation via Cross-Linkable Ligand for Efficient and Stable Perovskite Solar Cells. Small *19*, 2207189.

2. Gao, D., Li. B., Li, Z., Wu, X., Zhang, S., Zhao. D., Jiang, X., Zhang, C., Wang, Y., Li, Z., Li, N., Xiao, S., Wallace C.H., et al. (2022). Highly Efficient Flexible Perovskite Solar Cells

through Pentylammonium Acetate Modification with Certified Efficiency of 23.35%. Adv. Mater. 35, 2206387.

3. Cheng, H., Liu, C., Zhuang, J., Cao, J., Wang, T., Wong, W., Yan, F. (2022). KBF₄ Additive for Alleviating Microstrain, Improving Crystallinity, and Passivating Defects in Inverted Perovskite Solar Cells. Adv. Funct. Mater. *32*, 2204880.

4. Ge, C., Liu, X., Yang, Z., Li, H., Niu, W., Liu, X., Xong, Q. (2021). Thermal Dynamic Self-Healing Supramolecular Dopant Towards Efficient and Stable Flexible Perovskite Solar Cells. Angew. Chem. Int. Ed. *61*, e202116602.

5. Choi, J.S., Jang, Y.W., Kim, W., Choi, M., Kang, S.M. (2022). Optically and Mechanically Engineered Anti-Reflective Film for Highly Efficient Rigid and Flexible Perovskite Solar Cells. Adv. Energy Mater. *12*, 2201520.

6. Lian, Q., Wang, P., Wang, G., Zhang, X., Huang, Y., Li, D., Mi, G., Shi, R., Amini, A., Zhang, L., Cheng, C. (2022). Doping Free and Amorphous NiOx Film via UV Irradiation for Efficient Inverted Perovskite Solar Cells. Adv. Sci. *9*, 2201543.

7. Liu, S., Guan, X., Xiao, W., Chen, R., Zhou, J., Ren, F., Wang, J., Chen, W., Li, S., Qiu, L., Zhao, Y., Liu, Z., Chen, W. (2022). Effective Passivation with Size-Matched Alkyldiammonium Iodide for High-Performance Inverted Perovskite Solar Cells. Adv. Funct. *32*, 2205009.

8. Kang, Y., Li, R., Wang, A., Kang, JJ., Wang, Z., Bi, W., Yang, Y., Song, Y., Dong, Q. (2022). Ionogel-perovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energy Environ. Sci. *15*, 3439-3448.

9. Fan, B., Xiong, J., Zhang, Y., Gong, C., Li, F., Meng, X., Hu, X., Yuan, Z., Wang, F., Chen,
 Y. (2022). A Bionic Interface to Suppress the Coffee-Ring Effect for Reliable and Flexible
 Perovskite Modules with a Near-90% Yield Rate. Adv. Mater. *34*, 2201840.

10. Dou, J., Song, Q., Ma, Y., Wang, H., Yuan, G., Wei, X., Niu, X., Ma, S., Yang, X., Dou, J., Liu, S., Zhou, H., et al. (2023). Improved interfacial adhesion for stable flexible inverted perovskite solar cells. J. Energy Chem. *76*, 288-294.

11. Tabakoli, M.M., Tavakoli, R. (2020). All-Vacuum-Processing for Fabrication of Efficient, Large-Scale, and Flexible Inverted Perovskite Solar Cells. Phys Status Solidi Rapid Res Lett. *15*, 200049.

 Wang, Z., Lu, Y., Xu, Z., Hu, J., Chen, Y., Zhang, C., Wang, Y., Guo, F., Mai, Y. (2021).
 An Embedding 2D/3D Heterostructure Enables High-Performance FA-Alloyed Flexible Perovskite Solar Cells with Efficiency over 20%. Adv. Sci. 8, 2101856. 13. Li, J., Dewi, H.J., Wang, H., Zhao, J., Tiwari, N., Yantara, N., Malinauskas, T., Getautis, V., Savenije, T., Mathews, N., et al. (2021). Co-Evaporated MAPbI3 with Graded Fermi Levels Enables Highly Performing, Scalable, and Flexible p-i-n Perovskite Solar Cells. Adv. Funct. *31*, 2103252.

14. Wang, Z., Rong, X., Wang, L., Wang, W., Lin, H., Lin, X. (2020). Dual Role of Amino-Functionalized Graphene Quantum Dots in NiOx Films for Efficient Inverted Flexible Perovskite Solar Cells. ACS Appl. Mater. Interfaces. *12*, 8342-8350.