Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary information

<u>**Title</u>**: Locating Manganese Vanadate Phase with $PO_{4^{3-}}$ -Modified Mn^{2+} -O-V⁵⁺ Motifs Optimized for Catalytic NO_X and Poison Abatement under Oxidative Wet Conditions</u>

<u>Authors</u>: Seokhyun Lee,^a So Hyeon Park,^b and Jongsik Kim^{b, c}*

* corresponding author: jkim40@khu.ac.kr (J. Kim)

Affiliations:

^{*a*} Ajou Energy Science Research Center, Ajou University, Suwon, 16499, South Korea.

^b Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea.

^c KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, South Korea.

Contents

Experimental section	
Table S1-S12	
Fig. S1-S16	
References	

Experimental section

Catalysts

The catalysts were synthesized via impregnation-calcination techniques according to the protocols with minor modifications from those we reported earlier.¹⁻⁸ In the typical synthesis of TiO₂-supported Mn_xV₂O_{x+5} (X=1, 2, or 3; referred to as Mnx), 1.96 mmol of NH₄VO₃ (Junsei; ≥99.0 %) dissolved in 140 mL de-ionized H₂O was mixed with 'Z' mmol of Mn(NO₃)₂•XH₂O (Sigma-Aldrich; 98.0 %) dissolved in 60 mL de-ionized H₂O ('Z' of 0.98 mmol for Mn₁; 1.96 mmol for Mn₂; 2.94 mmol for Mn₃), stirred at 25 °C for an hour, and further mixed with 'W' g of TiO₂ (DT51 (anatase); CristalACTiVTM; 'W' g of 4.85 g for Mn₁; 4.79 g for Mn₂; 4.74 g for Mn₃) prior to being stirred at 25 °C for 18 hours.¹⁻⁶ The resulting synthetic mixture was then subjected to rotary evaporation for the removal of H₂O, dried overnight at 110 °C, and calcined at 500 °C for 5 hours with the ramping rate of 5 °C min^{-1.1-6} In the typical synthesis of TiO₂-supported Sb₂O₅ (referred to as Sb₂O₅/TiO₂), 7.39 mmol of Sb(CH₃COO)₃ (Alfa Aesar; 97.0 %) was dissolved in 250 mL of CH₃COOH (J. T. Baker; ≥97.0 %), mixed with 29.1 g of DT51, stirred at 25 °C for 18 hours, subjected to rotary evaporation for the removal of CH₃COOH, dried overnight at 110 °C, and calcined at 500 °C for 5 hours with the ramping rate of 5 °C min^{-1,1-6} In the typical synthesis of Sb₂O₅-promoted Mn₁ (referred to as Mn₁-Sb), its procedures were identical to those used to synthesize Mn₁ except for the substitution of 4.85 g of Sb₂O₅/TiO₂ for 4.85 g of TiO₂.¹⁻⁶ In the typical synthesis of Mn_x (or Mn₁-Sb) modified with (protonated) PO_4^{3-} functionalities (referred to as Mnx-P (or Mn₁-Sb-P)), 0.44 mmol of (NH₄)₂HPO₄ (Daejung; \geq 98.5 %) was dissolved in 250 mL de-ionized H₂O, mixed with 3 g of Mn_x (or Mn₁-Sb), stirred at 25 °C for 18 hours, subjected to rotary evaporation for the removal of H₂O, dried overnight at 110 °C, and calcined at 500 °C for an hour with the ramping rate of 10 °C min^{-1,7,8} In the typical synthesis of Mn₁-Sb modified with (protonated) SO_A^{2-} (A=3-4) functionalities (referred to as Mn₁-Sb-S), Mn₁-Sb was exposed to a N₂-balanced gas including 500 ppm SO₂ and 3 vol. % O_2/N_2 at 500 °C for an hour with the ramping rate of 10 °C min⁻¹ and the flow rate of 500 mL min⁻¹.^{1, 2} A commercial control of WO₃-promoted V₂O₅ on TiO₂ (referred to as V₂O₅-WO₃) was synthesized according to the protocols we reported elsewhere.¹⁻⁶ Mn₁-Sb-S and V₂O₅-WO₃ were utilized for comparison with Mn₁-Sb-P.

Characterizations

A NOVA 2200e (Quantachrome Instruments) served to collect N₂ adsorption-desorption isotherms of the catalysts at -196 °C after their surfaces were purged under vacuum ($1.0X10^{-3}$ mmHg) at 150 °C for 3 hours. The volumes of N₂ adsorbed in a-per gram of the catalysts at partial pressure regimes (P/P₀) of 0.05-0.30 were considered to evaluate their N₂-accessible Brunauer-Emmett-Teller (BET) surface areas (S_{BET, N2}) and Barrett-Joyner-Halenda (BJH) pore volumes (V_{BJH, N2}) at -196 °C. A BELSORP-MAX (MicrotracBEL Corp.) served to collect H₂O adsorption isotherms of the catalysts at 10-40 °C after their surfaces were purged under vacuum ($1.0X10^{-3}$ mmHg) at 150 °C for 3 hours.^{4, 6, 9-13} The amounts of H₂O adsorbed in a-per gram of the catalysts (N_{H2O}) at partial pressure regimes (P/P₀) of 0.05-0.30 were considered to assess their H₂O-accessible BET surface areas (S_{BET, H2O}) at 10-40 °C.^{4, 6, 9-13} Moreover, H₂O adsorption isotherms were simulated via Toth fitting (Eqn. S1), in which δ is referred to as the maximum number of H₂O adsorbed in a per-gram of the catalyst (mol_{H2O} g_{CAT}⁻¹), whereas ε , ζ , and P are referred to as the constant indigenous to the catalyst (bar⁻¹), the constant concerning heterogeneous feature of the catalyst surface (dimensionless-less), and the pressure (bar), respectively.^{4, 6, 9-13} Isosteric heats of H₂O adsorption on the catalyst surfaces at near-zero H₂O coverages (E_{H2O}) were then evaluated with the use of Clausius-Clapeyron equation (Eqn. S2), in which P₁/P₂ and R are referred to as the pressures (bar) at the temperatures of T₁/T₂ (K) and the ideal gas constant (8.3145 J mol⁻¹ K⁻¹), respectively.^{4, 6, 9-13}

$$N_{H2O} = \delta \times \frac{\varepsilon \times P}{\left(1 + (\varepsilon \times P)^{\zeta}\right)^{\frac{1}{\zeta^{2}}}} \quad (S1)$$
$$\ln\left(\frac{P_{1}}{P_{2}}\right) = \frac{E_{H2O}}{R} \times \left(\frac{T_{1} - T_{2}}{T_{1} \times T_{2}}\right) \quad (S2)$$

An ICS 3000 (Thermo Fisher Scientific) served to carry out inductively coupled plasma-optical emission spectroscopy (ICP-OES) and inductively coupled plasma-atomic absorption spectroscopy (ICP-AAS) experiments of the catalysts. An Ultim max 170 (Oxford) served to collect energy-dispersive X-ray spectroscopy (EDX) mapping images of the catalysts at the acceleration voltage of 15 keV after their surfaces were purged under vacuum (1.0X10⁻⁶ mmHg). A Titan 80-300TM (FEI) served to collect high-resolution transmission electron microscopy (HRTEM) images and selected area electron diffraction (SAED) patterns of the catalysts at the acceleration voltage of 300 keV after their surfaces were purged at 25 °C under vacuum (2.0X10⁻⁷ mmHg). A D8 Advance diffractometer (Bruker) served to collect X-ray diffraction (XRD) patterns of the catalysts under analytic

conditions of the 2θ range, the step size, and the scan speed of 20° - 80° , 0.02° per step, and 2 seconds per step, respectively, with the use of Cu K_{α} radiation (λ = 1.54 Å). A PHI 5000 VersaProbe (Ulvac-Phi) served to collect Xray photoelectron (XP) spectra of the catalysts and their surface atomic concentrations after the catalyst surfaces were purged at 25 °C under vacuum (1.5X10⁻¹⁰ mmHg). The XP spectra provided the resolution of 0.1 eV and were de-convoluted using Gaussian functions.^{1-8, 14} A Varian 400 MHz solid NMR spectrometer (Agilent Technologies) coupled with a 4.0 mm NB probe served to collect ³¹P magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of the catalysts with the channel of a 4.0 mm NB probe being dialed in to 161.97 MHz at the temperature and the magnetic field of 25 °C and 9.39 T, respectively.^{7,8,10} The ³¹P MAS NMR spectra of the catalysts loaded in a ZrO₂ rotor with the outer radius of 4.0 mm were collected under analytic conditions of the $\pi/2$ signal duration, the acquisition time, the total scan number, the spinning rate, and the recycle delay of 4.0 µsecond, 0.02 second, 10,000, 10.0 kHz, and 0.2 µsecond, respectively.^{7, 8, 10} The ³¹P MAS NMR spectra were deconvoluted using Gaussian functions.^{7, 8, 10} An FT/IR-6X (Jasco) equipped with ZnSe optics and a mercurycadmium-telluride detector served to monitor background-subtracted, in situ diffuse reflectance infrared Fourier transform (DRIFT) spectra for the catalysts with their surfaces being purged under 3 vol. % O₂/N₂ at 300 °C for 30 minutes and exposed to a N₂-balanced feed gas containing 1,000 ppm NH₃ or 1,000 ppm NO/3.0 vol. % O₂ at 220 °C for 30 minutes (Fig. 5).^{1-8, 14} A BELCAT-B (BEL Japan, Inc.) served to collect the profiles of CO-pulsed chemisorption (thermal conductivity detector (TCD) signal versus time), O2-pulsed chemisorption (thermal conductivity detector (TCD) signal versus time), H2-temperature-programmed reduction (H2-TPR; thermal conductivity detector (TCD) signal versus temperature), NH₃-temperature-programmed desorption (NH₃-TPD; thermal conductivity detector (TCD) signal versus temperature), and O₂-temperature-programmed desorption (O2-TPD; thermal conductivity detector (TCD) signal versus temperature) for the catalysts. CO-pulsed chemisorption experiments were conducted by letting the catalyst surfaces be purged under 10 vol. % O₂/He at 300 °C for an hour, cooled to 50 °C under a He, and subjected to periodic CO injection at 50 °C until the CO pulseinduced change in thermal conductivity detector (TCD) signals was minute.^{1-8, 14} O₂-pulsed chemisorption experiments were performed by letting the catalyst surfaces be purged under 10 vol. % O₂/He at 300 °C for an hour, cooled to 50 °C under a He, reduced under 10 vol. % H₂/He at 300 °C for an hour with the ramping rate of 10 °C min⁻¹, cooled to 250 °C under a He, and subjected to periodic O₂ injection at 250 °C until the O₂ pulseinduced change in thermal conductivity detector (TCD) signals was minute.³⁻⁶ H₂-TPR experiments were carried out by letting the catalyst surfaces be purged under an Ar at 300 °C for an hour, cooled to 50 °C under an Ar, and heated to 800 °C under 10 vol. % H₂/Ar with the ramping rate of 10 °C min⁻¹. NH₃-TPD experiments were conducted by letting the catalyst surfaces be purged under 10 vol. % O₂/He at 300 °C for an hour, cooled to 50 °C (or 220 °C) under a He, and exposed to 5 vol. % NH₃/He at 50 °C (or 220 °C) for an hour to saturate the surfaces with NH₃.^{1-8, 14} The surfaces were then exposed to a He at 50 °C (or 220 °C) for an hour to remove physisorbed NH₃ molecules and heated to 700 °C under a He with the ramping rates (β) of 10 (for NH₃ chemisorption at 50 °C) or 10-30 °C min⁻¹ (for NH₃ chemisorption at 220 °C).^{1-8, 14} The resulting NH₃-TPD profile at a β value was then deconvoluted using Gaussian functions to provide three sub-bands (I-III), each of which possessed the temperature with the maximum intensity of TCD signal (T_{MAX}).^{1-8, 14} Eqn. S3 then served to evaluate the energy required to release NH₃ molecules from the catalyst surface (E_{NH3}) at 220 °C via TPD theory.¹⁻⁸ In Eqn. S3, θ_{MAX} and ν_n/n correspond to the surface coverage of NH₃ at T_{MAX} and the lumped constants indigenous to the surface, respectively.1-8, 14

$$ln\left(\frac{\beta}{T_{MAX}^2}\right) = -\left(\frac{E_{NH3}}{R}\right)\left(\frac{1}{T_{MAX}}\right) - \underbrace{2.303 \times \log\left(\frac{E_{NH3}}{\nu_n Rn\theta_{MAX}^{n-1}}\right)}_{CONSTANT}$$
(S3)

O₂-TPD experiments were conducted by letting the catalyst surfaces be purged under 10 vol. % O₂/He at 300 °C for an hour, cooled to 50 °C under a He, and reduced using 10 vol. % H₂/He at 300 °C for an hour with the ramping rate of 10 °C min⁻¹.³⁻⁶ The surfaces were then cooled to 50 °C under a He, exposed to 3 vol. % O₂/He at 50 °C for an hour, exposed to a He at 50 °C for an hour to remove physisorbed O₂ molecules, and heated to 700 °C under a He with the β values of 10-30 °C min⁻¹.³⁻⁶ The resulting O₂-TPD profile at a β value was then de-convoluted using Gaussian functions to provide three sub-bands (I-III), each of which possessed the temperature with the maximum intensity of TCD signal (T_{MAX}).³⁻⁶ Eqn. S4 then served to evaluate the energy required to release mobile oxygens (O_M) from the catalyst surface (E_{OM}) at 50 °C via TPD theory. In Eqn. S4, θ_{MAX} and v_n/n correspond to the surface coverage of O₂ at T_{MAX} and the lumped constants indigenous to the surface, respectively.³⁻⁶

$$\ln\left(\frac{\beta}{T_{MAX}^2}\right) = -\left(\frac{E_{OM}}{R}\right)\left(\frac{1}{T_{MAX}}\right) - \underbrace{2.303 \times \log\left(\frac{E_{OM}}{\nu_n Rn\theta_{MAX}^{n-1}}\right)}_{CONSTANT} (S4)$$

A quartz reactor equipped with a SO₂ analyzer (Fuji Electric Co., ZKJ-2) served to collect the profiles of SO₂-TPD (SO₂ concentration (C_{SO2}) *versus* temperature) for the catalysts by letting the catalyst surfaces be purged under 3 vol. % O₂/N₂ at 300 °C for an hour, cooled to 220 °C under a N₂, and exposed to 5,000 ppm SO₂/N₂ at 220 °C for an hour to saturate the surfaces with SO₂ molecules.³⁻⁶ The surfaces were then exposed to a N₂ at 220 °C for an hour to remove physisorbed SO₂ molecules and heated to 900 °C under a N₂ with β values of 10-20 °C min^{-1,3-6} The resulting SO₂-TPD profile at a β value was then de-convoluted using Gaussian functions to provide five subbands (I-V), each of which possessed the temperature with the maximum intensity of C_{SO2} (T_{MAX}).³⁻⁶ Eqn. S5 then served to evaluate the energy required to release SO₂ molecules from the catalyst surface (E_{SO2}) at 220 °C via TPD theory.³⁻⁶ In Eqn. S5, θ_{MAX} and v_n/n correspond to the surface coverage of SO₂ at T_{MAX} and the lumped constants indigenous to the surface, respectively.³⁻⁶

$$ln\left(\frac{\beta}{T_{MAX}^2}\right) = -\left(\frac{E_{SO2}}{R}\right)\left(\frac{1}{T_{MAX}}\right) - \underbrace{2.303 \times \log\left(\frac{E_{SO2}}{\nu_n Rn\theta_{MAX}^{n-1}}\right)}_{CONSTANT}$$
(S5)

A thermo-gravimetric analyzer (TGA, Mettler Toledo, TGA 2) connected to a mass spectrometer (MASS, Hiden Analytical, HPR20) served to collect the profiles of weight percent (W; wt. %) loss *versus* temperature and SO₂ signal (m/z^{-64}) released *versus* temperature for the catalysts poisoned with ammonium sulfate (AS) and ammonium bisulfate (ABS).^{1, 2, 4-6} Typically, the AS/ABS-poisoned catalyst was loaded in an Al₂O₃ pans, purged under an Ar at 100 °C for an hour to remove physisorbed H₂O molecules, and heated to 600 °C under an Ar with the ramping rate of 5 °C min⁻¹ and the flow rate of 50 mL min⁻¹.^{1, 2, 4-6}

Reactions

The catalyst particulates sieved with sizes of 200-300 μ m or 300-425 μ m were loaded in a quartz reactor with an inner diameter of 0.6 cm or 0.8 cm and altered the reaction control volume of 0.066-0.50 mL at the total flow rate of 500 mL min⁻¹, leading to achieve the gas hourly space velocities (GHSV) of 60,000-450,000 hr⁻¹.^{1-8, 14} In the typical selective catalytic NOx reduction (SCR) run, a quartz reactor bearing the catalyst particulates was situated inside a furnace, purged under 3 vol. % O₂/N₂ at 500 °C for an hour, and exposed to a N₂-balanced, wet feed gas composed of 800 ppm NOx, 800 ppm NH₃, 3.0 vol. % O₂, 5.4 vol. % H₂O, or 500 ppm SO₂ at 150-400 °C with the total flow rate of 500 mL min⁻¹.^{1-8, 14} A gas component downstream of a quartz reactor was quantified using a ZKJ-2 (Fuji Electric Co.) and a detector tube (GASTEC Co.) for NO/N₂O/O₂/SO₂ and for NO₂/NH₃, respectively.^{1-8, 14} Eqn. S6 and S7 served to evaluate NO_X conversion (X_{NOX}) and N₂ selectivity (S_{N2}) for the catalyst, respectively. In Eqn. S6-S7, C_{*j*, IN and C_{*j*, OUT} are referred to as the concentration of gaseous species *j* at the inlet (IN) and the outlet (OUT), respectively.^{1-8, 14}}

$$X_{NOX} (\%) = \frac{C_{NOX,IN} - C_{NOX,OUT}}{C_{NOX,IN}} \times 100 (S6)$$

$$S_{N2} (\%) = \frac{C_{NO,IN} + C_{NH3,IN} - C_{NO,OUT} - C_{NH3,OUT} - C_{NO2,OUT} - 2 \times C_{N20,OUT}}{C_{NO,IN} + C_{NH3,IN} - C_{N0,OUT} - C_{NH3,OUT}} \times 100 (S7)$$

Eqn. S8 served to assess NO_x consumption rate of the catalyst defined by the moles of NO_x consumed in a per-BA⁻-H⁺ site and in a per-unit time basis (- r_{NOX}).^{1-6, 8, 14} In Eqn. S8, N_{NH3} is referred to as the amount of NH₃ chemisorbed in a per-gram of the catalyst at 220 °C, as determined via its NH₃-TPD experiment (Fig. S6-S7).^{1-6, 8, 14}

$$-r_{NOX} (min^{-1}) = \frac{moles of NO_X consumed in a per - gram of the catalyst and in a per - unit time basis (\Delta mol_{NOX} g_{CAT}^{-1} min^{-1})}{N_{NH3} of the catalyst (mol_{NH3} g_{CAT}^{-1})}$$
(S8)

Eqn. S9 served to assess ABS consumption rate of the catalyst defined by the moles of ABS consumed in a per-BA⁻-H⁺ site and in a per-unit time basis (- r_{ABS}).^{1, 2, 4-6} In Eqn. S9, N_{NH3} is referred to as the amount of NH₃ chemisorbed in a per-gram of the catalyst at 220 °C, as determined via its NH₃-TPD experiment (Fig. S6-S7).^{1, 2, 4-6} Moreover, in Eqn. S9, moles of ABS consumed in a per-gram of the catalyst (Δ mol_{ABS} g_{CAT}⁻¹) and time span (Δ t) required to quantify Δ mol_{ABS} g_{CAT}⁻¹ is determined via TGA-MASS dataset of the catalyst at 260 (<±0.3) °C, 270 (<±0.3) °C, 280 (<±0.3) °C, and 290 (<±0.3) °C.^{1, 2, 4-6}

 $-r_{ABS} (min^{-1}) = \frac{moles \ of \ ABS \ consumed \ in \ a \ per - gram \ of \ the \ catalyst \ (\Delta mol_{ABS} \ g_{CAT}^{-1})}{N_{NH3} \ of \ the \ catalyst \ (mol_{NH3} \ g_{CAT}^{-1}) \times \ time \ span \ (\Delta t) \ required \ to \ quantify \ \Delta mol_{ABS} \ g_{CAT}^{-1} \ (S9)}$

Table S1. The numbers of V^{5+} -O-Mn²⁺ channels in a per-Mn²⁺ center (N_{V5+-O-Mn2+}) pertaining to [Mn²⁺-(O²⁻)₆]¹⁰⁻ sub-units for intact Mn_xV₂O_{x+5} architectures.

х	geometry of sub-unit ^a	coordination number of Mn ²⁺ center ^a	bridged bond (type; number) ^a	Nv5+-O-Mn2+ ^a
1	octahedral	6	■ Mn ²⁺ /V ⁵⁺ -O-Mn ²⁺ (<i>bi</i> -; 4) ■ V ⁵⁺ /V ⁵⁺ -O-Mn ²⁺ (<i>bi</i> -; 2)	8
2	octahedral	6	■ Mn ²⁺ /V ⁵⁺ -O-Mn ²⁺ (<i>bi-</i> ; 4) ■ Mn ²⁺ /V ⁵⁺ /V ⁵⁺ -O-Mn ²⁺ (<i>tri</i> -; 2)	8
3	octahedral	6	■ Mn ²⁺ /V ⁵⁺ -O-Mn ²⁺ (<i>bi-</i> ; 4) ■ Mn ²⁺ /Mn ²⁺ /V ⁵⁺ -O-Mn ²⁺ (<i>tri-</i> ; 2)	6

^a See Fig. 1D-1F.

Х	geometry of sub-unit ^a	coordination number of V ⁵⁺ center ^a	bridged bond (type; number) ^a	N _{Mn2+-O-V5+} ^a
1	octahedral	6	 ■ V⁵⁺/V⁵⁺-O-V⁵⁺ (bi-; 3) ■ V⁵⁺/Mn²⁺-O-V⁵⁺ (bi-; 2) ■ Mn²⁺/Mn²⁺-O-V⁵⁺ (bi-; 1) 	4
2	tetrahedral	4	■ V ⁵⁺⁻ O-V ⁵⁺ (<i>non-</i> ; 1) ■ Mn ²⁺ /Mn ²⁺ -O-V ⁵⁺ (<i>bi-</i> ; 3)	6
3	tetrahedral	4	■ Mn ²⁺ /Mn ²⁺ -O-V ⁵⁺ (<i>bi-</i> ; 3) ■ Mn ²⁺ /Mn ²⁺ /Mn ²⁺ -O-V ⁵⁺ (<i>tri-</i> ; 1)	9

Table S2. The numbers of $Mn^{2+}O-V^{5+}$ channels in a per-V⁵⁺ center ($N_{Mn^{2+}O-V^{5+}}$) pertaining to $[V^{5+}-(O^{2-})_6]^{7-}$ and $[V^{5+}-(O^{2-})_4]^{3-}$ sub-units for intact $Mn_XV_2O_{X+5}$ architectures with X values of 1 and ≥ 2 , respectively.

^a See Fig. 1D-1F.

	ant	icipated f	for Mn _x V ₂ O	X+5		identified for Mn _x
	Nv5+-O-Mn2+			NMn2+-0-V5+		experimental result
1	2	3	1	2	3	
8	8	6	4	6	8	
	X of 1~2>3		2	X of 1<2<3	}	1~2<3 ^a
	X of 1~2>3		2	X of 1<2<3	}	1~2<3 ^b
	X of 1~2<3		2	X of 1>2>3	}	1~2<3 ^a
	X of 1~2<3		2	X of 1>2>3	}	1~2<3 ^b
	X of 1~2>3			-		1~2>3 ^c
	-		2	X of 1<2<3	}	1~2<3 ^c
	X of 1~2>3 -			1~2>3 ^d		
	X of 1~2<3		2	X of 1>2>3	5	1~2<3 ^d
	X of 1~2>3		2	X of 1<2<3	8	1~2>3 ^d
	1 8	ant Nv5+-O-Mn2+ 1 2 8 8 X of 1~2>3 X of 1~2>3 X of 1~2<3 X of 1~2<3 X of 1~2>3 - X of 1~2>3 - X of 1~2>3 X of 1~2>3 X of 1~2>3 X of 1~2>3 X of 1~2>3	anticipated f Nv5+-O-Mn2+ 1 2 3 8 8 6 X of 1~2>3 X X X of 1~2>3 X X X of 1~2<3	anticipated for MnxV2O Nv5+-O-Mn2+ 1 2 3 1 8 8 6 4 X of 1~2>3 2 2 X of 1~2>3 2 2 X of 1~2>3 2 2 X of 1~2<3	$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c } \mbox{anticipated for MnxV2Ox+5} \\ \hline Nv5+-O-Mn2+ & NMn2+-O-V5+ \\ \hline 1 & 2 & 3 & 1 & 2 & 3 \\ \hline 1 & 2 & 3 & 1 & 2 & 3 \\ \hline 1 & 2 & 3 & 1 & 2 & 3 \\ \hline 3 & 8 & 6 & 4 & 6 & 8 \\ \hline X & of 1^2>3 & X & of 1<2<3 & X \\ \hline X & of 1^2>3 & X & of 1<2<3 & X \\ \hline X & of 1^2>3 & X & of 1<2<3 & X \\ \hline X & of 1^2>3 & X & of 1<2>3 & X \\ \hline X & of 1^2>3 & X & of 1>2>3 & X \\ \hline X & of 1^2>3 & - & & & \\ \hline X & of 1^2>3 & - & & & \\ \hline X & of 1^2>3 & - & & & \\ \hline X & of 1^2>3 & - & & & \\ \hline X & of 1^2>3 & - & & & \\ \hline X & of 1^2>3 & - & & & \\ \hline X & of 1^2>3 & X & of 1>2>3 & X \\ \hline X & of 1^2>3 & X & of 1>2>3 & X \\ \hline X & of 1^2>3 & X & of 1>2>3 & X \\ \hline X & of 1^2>3 & X & of 1>2>3 & X \\ \hline X & of 1^2>3 & X & of 1>2>3 & X \\ \hline \end{array}$

Table S3. The hierarchies predicted concerning the properties of $Mn_XV_2O_{X+5}$ architectures (X=1-3) with the use of their $N_{V5+-O-Mn2+}$ or $N_{Mn2+-O-V5+}$ values and those identified for the Mn_X catalysts via experiments.

^{*a*} via NH₃-TPD (Fig. 4A, Fig. S6-S7, and Table S7). ^{*b*} via Arrhenius plot (Fig. 4C). ^{*c*} via XP spectroscopy (Fig. S8 and Table S5). ^{*d*} via O₂-pulsed chemisorption (Table S4) or O₂-TPD (Fig. 6A, Fig. S10-S11, and Table S9).

Table S4. Properties of the catalysts.

	Mn1	Mn ₂	Mn₃	Mn₁-Sb	Mn ₁ -P	Mn ₂ -P	Mn ₃ -P	Mn ₁ -Sb -P
SBET, N2 ^{<i>a, b</i>} (m _{N2} ² g _{CAT} ⁻¹)	-	-	-	-	76.5 (±4.2)	74.9 (±3.5)	74.9 (±4.8)	70.9 (±3.5)
V _{BJH, N2} ^{<i>a, c</i>} (cm _{N2} ³ g _{CAT} ⁻¹)	-	-	-	-	0.3 (±0.1)	0.3 (±0.1)	0.3 (±0.1)	0.3 (±0.1)
Mn/V (bulk) ^{d, e, f}	-	-	-	-	0.5 (±0.1)	1.0 (±0.1)	1.4 (±0.1)	0.5 (±0.1)
Mn/V (surface) ^{d, g}	-	-	-	-	0.2 (±0.1)	0.4 (±0.1)	0.7 (±0.1)	0.2 (±0.1)
Mn/V (surface) ^{d, h}	-	-	-	-	0.2 (±0.1)	0.4 (±0.1)	0.7 (±0.1)	0.2 (±0.1)
P/metal (bulk) ^{d, e, f, i}	-	-	-	-	0.3 (±0.1)	0.2 (±0.1)	0.2 (±0.1)	0.2 (±0.1)
P/metal (surface) ^{d, g, i}	-	-	-	-	0.7 (±0.1)	0.6 (±0.1)	0.7 (±0.1)	0.7 (±0.1)
P/metal (surface) ^{d, h, i}	-	-	-	-	0.7 (±0.1)	0.7 (±0.1)	0.7 (±0.1)	0.7 (±0.1)
metal/V (surface) ^{d, g, i}	-	-	-	-	0.2 (±0.1)	0.4 (±0.1)	0.7 (±0.1)	0.6 (±0.1)
metal/V (surface) ^{d, h, i}	-	-	-	-	0.2 (±0.1)	0.4 (±0.1)	0.7 (±0.1)	0.6 (±0.1)
Nco ^{<i>j</i>} (X10 ⁻¹ μmolco g _{CAT} ⁻¹)	2.1 (±0.1)	5.4 (±0.3)	5.0 (±0.3)	2.8 (±0.1)	1.7 (±0.1)	4.2 (±0.2)	4.4 (±0.1)	2.4 (±0.1)
N ₀₂ ^k (μmol ₀₂ g _{CAT} -1)	-	-	-	-	27.3 (±2.0)	29.5 (±2.6)	21.5 (±1.8)	27.2 (±2.4)

^{*a*} via N₂ physisortion at -196 °C. ^{*b*} via BET theory. ^{*c*} via BJH theory. ^{*d*} molar ratio. ^{*e*} via ICP-OES. ^{*f*} via ICP-AAS. ^{*g*} via XP spectroscopy. ^{*h*} via EDX mapping. ^{*i*} metal of Mn+V for Mn_X-P; Mn+V+Sb for Mn₁-Sb-P. ^{*j*} via CO-pulsed chemisorption at 50 °C. ^{*k*} via O₂-pulsed chemisorption at 250 °C.

		Μ	In ₁ -P	Mn ₂ -P		Mn ₃ -P		Mn1-Sp-P	
rogion	nhaca	location	composition	location	composition	location	composition	location	composition
region	phase	(eV)	(%)	(eV)	(%)	(eV)	(%)	(eV)	(%)
	Mn²+ (●)	652.3	41.2	652.3	28.6	652.7	28.2	652.0	36.1
Mn 2p _{1/2} ^{<i>a, b, c</i>}	Mn³⁺ (●)	653.7	36.7	653.7	32.6	654.1	48.4	653.4	33.8
	Mn⁴+ (●)	655.5	22.1	655.5	38.8	655.9	23.4	655.2	30.1
	Mn ²⁺ (o)	640.9	41.2	640.9	28.6	641.3	28.2	640.6	36.1
Mn 2p _{3/2} ^{a, b, c}	Mn³⁺ (੦)	642.0	36.7	642.0	32.6	642.4	48.4	641.7	33.8
	Mn ⁴⁺ (o)	643.5	22.1	643.5	38.8	643.9	23.4	643.2	30.1
	V ³⁺ (O)	515.6	35.2	515.3	19.1	515.0	7.0	515.9	49.5
V 2p _{3/2} ^{<i>a, b, d</i>}	V ⁴⁺ (O)	516.6	21.9	516.3	33.3	516.0	16.4	516.9	26.4
	V ⁵⁺ (0)	517.3	42.9	517.0	47.6	516.7	76.6	517.6	24.1
	PO4 ³⁻ (O)	131.7	11.2	131.7	11.4	131.7	10.9	131.7	11.8
P 2p _{3/2} ^{a, b, e}	HPO4 ²⁻ (0)	132.7	8.1	132.7	9.6	132.7	9.5	132.7	8.5
	H ₂ PO ₄ ⁻ (o)	133.6	80.7	133.6	79.0	133.6	79.6	133.6	79.7
	Οβ (<mark>Ο</mark>)	529.9	64.6	529.9	67.1	529.9	71.0	530.0	63.1
O 1s ^{<i>a</i>, <i>b</i>, <i>f</i>}	Ο _α (Ο)	530.5	30.4	530.5	29.9	530.3	24.2	530.7	34.1
	Ο _α ΄ (Ο)	532.0	5.0	532.0	3.0	532.0	4.8	532.0	2.8

Table S5. Locations and compositions of phases present in the catalyst surfaces examined via XP spectra.

^{*a*} de-convoluted using Gaussian functions. ^{*b*} peak resolution of 0.1 eV. ^{*c*} See Fig. S3. ^{*d*} See Fig. S4. ^{*e*} See Fig. 3A-3D. ^{*f*} See Fig. S8.

_	Μ	n ₁ -P	Μ	In ₂ -P	M	In ₃ -P	Mn	1-Sp-P
functionality	location	composition	location	composition	location	composition	location	composition
Tunctionality	(ppm)	(%)	(ppm)	(%)	(ppm)	(%)	(ppm)	(%)
PO4 ³⁻ (O) <i>a, b</i>	-24.6	11.5	-24.6	11.8	-24.6	11.0	-24.6	11.3
HPO4 ²⁻ (○) ^{a, b}	-17.6	7.7	-17.6	9.8	-17.6	9.1	-17.6	8.5
H ₂ PO ₄ ⁻ (○) ^{<i>a, b</i>}	-10.6	80.8	-10.6	78.4	-10.6	79.9	-10.6	80.2

Table S6. Locations and compositions of PO₄³⁻ modifier and its protonated analogues present in the catalyst surfaces examined via ³¹P MAS NMR spectra.

^a de-convoluted using Gaussian functions. ^b See Fig. 3E-3H.

			Тмах	(°C)	
sub-band	β (°C min⁻¹)	Mn ₁ -P	Mn ₂ -P	Mn₃-P	Mn1-Sp- P
	10	346.4	337.2	370.3	362.3
l ^{<i>a</i>, <i>b</i>}	20	350.0	340.0	373.2	366.0
	30	352.7	342.8	376.0	369.4
	10	403.3	403.6	417.5	396.2
II ^{a, b}	20	407.2	407.0	420.7	400.6
	30	410.5	410.3	424.0	403.8
	10	483.0	499.9	522.1	452.6
III ^{a, b}	20	487.0	504.0	526.0	457.0
	30	491.4	508.4	530.4	461.2
			slope	^{d, e} (K)	
sub-	-band	Mn ₁ -P	Mn ₂ -P	Mn₃-P	Mn ₁ -Sb- P
	l ^c	-2928.5	-3355.7	-3673.2	-3645.2
I	c	-3014.5	-3380.0	-3667.4	-2690.9
I	^c	-3172.6	-3294.4	-3648.9	-2769.1

Table S7. T_{MAX} values and slopes of ln (β/T_{MAX}^2) versus $1/T_{MAX}$ for the sub-bands pertaining to the de-convoluted NH₃-TPD profiles of the catalysts recorded post NH₃ chemisorption at 220 °C with β values of 10-30 °C min⁻¹.

^{*a*} de-convoluted using Gaussian functions. ^{*b*} See Fig. S6-S7. ^{*c*} See Fig. 4A. ^{*d*} via TPD theory. ^{*e*} regression factors (R^2) of ≥ 0.99 .

Table S8r _{NOX} values	of the catal	ysts recorded a	at 205-250 °C.
---------------------------------	--------------	-----------------	----------------

	<i>-r</i> _{NOX} ^{<i>a, b, c</i>} (X10 ⁻¹ min ⁻¹)						
Treaction (°C)	Mn ₁ -P	Mn ₂ -P	Mn₃-P	Mn1-Sb- P			
205	1.9 (±0.1)	1.8 (±0.1)	1.1 (±0.1)	2.1 (±0.1)			
220	2.7 (±0.1)	2.7 (±0.1)	1.6 (±0.1)	3.0 (±0.1)			
235	4.0 (±0.1)	4.0 (±0.3)	2.6 (±0.1)	4.3 (±0.1)			
250	5.5 (±0.1)	5.3 (±0.1)	3.4 (±0.1)	6.2 (±0.1)			

^{*a*} SCR environments: 800 ppm NO_x; 800 ppm NH₃; 3.0 vol. % O₂; 5.4 vol. % H₂O; catalyst sieved with sizes of 300-425 μ m; GHSV of 350,000 hr⁻¹; total flow rate of 500 mL min⁻¹; balanced by a N₂. ^{*b*} X_{NOX} values of <30.0 %. c S_{N2} values of ~100.0 %.

			Тмах	: (°C)	
sub-band	β (°C min⁻¹)	Mn ₁ -P	Mn ₂ -P	Mn₃-P	Mn1-Sp- P
	10	290.2	302.9	312.0	232.6
^{<i>a</i>, <i>b</i>}	20	293.0	305.4	314.8	235.0
	30	295.2	308.5	317.0	237.4
	10	443.5	419.6	398.2	364.8
II ^{a, b}	20	447.6	423.5	401.8	368.4
	30	451.6	426.8	404.6	372.0
	10	488.1	485.9	465.4	487.2
III ^{a, b}	20	492.1	490.0	469.5	492.6
	30	496.9	494.3	472.9	496.8
			slope	^{d, e} (K)	
sub-	band	Mn ₁ -P	Mn ₂ -P	Mn₃-P	Mn ₁ -Sb- P
	с	-3219.6	-2909.2	-3517.8	-2655.3
I	l ^c	-2935.1	-3194.2	-3419.9	-2618.4
III ^c		-3001.9	-3205.6	-3516.4	-2611.4

Table S9. T_{MAX} values and slopes of ln (β/T_{MAX}^2) versus $1/T_{MAX}$ for the sub-bands pertaining to the de-convoluted O₂-TPD profiles of the catalysts recorded post O₂ chemisorption at 50 °C with β values of 10-30 °C min⁻¹.

^{*a*} de-convoluted using Gaussian functions. ^{*b*} See Fig. S10-S11. ^{*c*} See Fig. 6A. ^{*d*} via TPD theory. ^{*e*} regression factors (R^2) of ≥ 0.99 .

	_		coefficient ^a		
catalyst	temperature	А	В	С	regression
Catalyst	(°C)	(mmol _{H20} g _{CAT} -1)	(bar ⁻¹)	(dimensionless)	factor (R ²)
	10	14441.40	0.42X10 ⁻³	0.21	0.99
Mn ₁ -P ^b	25	40.95	0.41X10 ⁻¹	4.01	0.99
	40	8.31	0.15X10 ⁰	1.99	0.99
	10	13441.38	0.10X10 ⁻²	0.19	0.99
Mn ₂ -P ^b	25	37.95	0.10X10 ⁰	4.01	0.99
	40	7.05	0.31X10 ⁰	4.01	0.99
	10	13520.57	0.10X10 ⁻²	0.19	0.99
Mn₃-P ^b	25	37.11	0.11X10 ⁰	4.01	0.99
	40	8.38	0.39X10 ⁰	4.02	0.99
	10	14692.74	0.54X10 ⁻³	0.22	0.99
Mn ₁ -Sb-P ^b	25	54.22	0.60X10 ⁻²	4.01	0.99
	40	8.13	0.31X10 ⁰	2.02	0.99

Table S10. Coefficients utilized to simulate H_2O isotherms of the catalysts recorded at 10-40 °C.

^{*a*} via Toth fitting. ^{*b*} See Fig. S12.

		T _{MAX} (°C)		
sub-band	β (°C min⁻¹)	V ₂ O ₅ -WO ₃	Mn ₁ -Sb-P	
	10	473.6	500.0	
<i>a</i> , <i>b</i>	15	475.0	501.8	
	20	476.1	503.7	
	10	608.0	620.0	
II ^{<i>a, b</i>}	15	610.0	622.7	
	20	611.6	625.0	
	10	685.0	636.7	
III ^{a, b}	15	687.0	639.5	
	20	689.2	641.5	
	10	740.5	675.0	
IV ^{a, b}	15	743.0	677.8	
	20	745.2	680.2	
	10	819.2	770.4	
V ^{<i>a, b</i>}	15	822.0	773.6	
	20	824.8	776.5	
		slope ^{d, e} (K)		
sub	-band	V_2O_5 - WO_3	Mn ₁ -Sb-P	
	l c	-6236.2	-4082.5	
	II ^c	-5720.8	-3765.8	
I	II ^c	-5693.0	-4139.1	
I	V ^c	-5581.2	-4120.5	
,	V c	-5243.0	-4134.5	

Table S11. T_{MAX} values and slopes of ln (β/T_{MAX}^2) versus $1/T_{MAX}$ for the sub-bands pertaining to the de-convoluted SO₂-TPD profiles of the catalysts recorded post SO₂ chemisorption at 220 °C with β values of 10-20 °C min⁻¹.

^{*a*} de-convoluted using Gaussian functions. ^{*b*} See Fig. S14. ^{*c*} See Fig. 8A. ^{*d*} via TPD theory. ^{*e*} regression factors (R^2) of ≥ 0.98 .

AS/ABS-poisoned	TREACTION ^b	$\Delta T_{\text{REACTION}}$	Δt	ΔN AS/ABS ^{c, d, e}	-r ABS ^f
catalyst ^a	(°C)	(°C)	(minute)	(µmolabs gcat ⁻¹)	(X10 ⁻² min ⁻¹)
Mn1-Sb-P	260	0.50	0.10	0.92	7.75
	270	0.35	0.07	0.74	8.86
	280	0.48	0.10	1.11	9.62
	290	0.43	0.09	1.11	10.74
V2O5-WO3	260	0.10	0.02	0.19	4.36
	270	0.08	0.02	0.19	5.26
	280	0.15	0.03	0.38	5.82
	290	0.20	0.04	0.58	6.55

Table S12. TGA-MASS dataset utilized to assess $-r_{ABS}$ values of the AS/ABS-poisoned catalysts at 260-290 °C.

^{*a*} AS/ABS poison environments: 800 ppm NO_X; 800 ppm NH₃; 500 ppm SO₂; 3.0 vol. % O₂; 5.4 vol. % H₂O; 180 °C; 30 hours; catalysts sieved with sizes of 300-425 μ m; GHSV of 60,000 hr⁻¹; total flow rate of 500 mL min⁻¹; balanced by a N₂. ^{*b*} deviation of <± 0.3 °C from 260-290 °C. ^{*c*} AS/ABS pyrolysis environments: total flow rate of 50 mL min⁻¹; ramping rate of 5 °C min⁻¹; under an Ar. ^{*d*} presuming the entire transformation of AS into ABS at <260 °C. ^{*e*} See Fig. S15. ^{*f*} X_{ABS} values of <20.0%.

Fig. S1. EDX mapping images of the catalysts (Mn₁-P for (A-F); Mn₂-P for (G-L); Mn₃-P for (M-R); Mn₁-Sb-P for (S-Y)).

Fig. S2. XRD patterns of the catalysts (black solid lines; Mn₁-P for (A); Mn₂-P for (B); Mn₃-P for (C); Mn₁-Sb-P for (D)) and those simulated for *tetragonal* TiO₂ polymorphs (red solid lines for anatase (JCPDF No. of 01-071-1166); green solid lines for rutile (JCPDF No. of 01-072-1148)). In (A-D), black solid circles indicate the bulk facets indexed to those for *tetragonal* anatase.

Fig. S3. XP spectra of the catalysts in the Mn 2p regimes (Mn₁-P for (A); Mn₂-P for (B); Mn₃-P for (C); Mn₁-Sb-P for (D)). In (A-D), gray solid lines and black empty circles correspond to the raw spectra and those fitted using Gaussian functions, respectively. Moreover, in (A-D), red/green/blue and cyan empty circles indicate surface $Mn^{2+}/Mn^{3+}/Mn^{4+}$ species and satellite positioned in the Mn 2p $_{3/2}$ domains, respectively, whereas red/green/blue solid circles correspond to surface $Mn^{2+}/Mn^{3+}/Mn^{4+}$ species situated in the Mn 2p $_{1/2}$ regions with their relative abundance being detailed in Table S5.

Fig. S4. XP spectra of the catalysts in the V 2p $_{3/2}$ regimes (Mn₁-P for (A); Mn₂-P for (B); Mn₃-P for (C); Mn₁-Sb-P for (D)). In (A-D), gray solid lines and black empty circles correspond to the raw spectra and those fitted using Gaussian functions, respectively, whereas red/green/blue empty circles indicate surface V³⁺/V⁴⁺/V⁵⁺ species with their relative abundance being detailed in Table S5.

Fig. S5. NH₃-TPD profiles (TCD signal *versus* temperature) of the catalysts (Mn₁-P for (A); Mn₂-P for (B); Mn₃-P for (C); Mn₁-Sb-P for (D)), whose surfaces chemisorbed NH₃ molecules at 50 °C and were heated to 700 °C with a ramping rate (β) of 10 °C min⁻¹. In (A-D), N_{NH3} values indicate the amounts of NH₃ chemisorbed in a per-gram of the catalysts at 50 °C.

Fig. S6. NH₃-TPD profiles (TCD signal *versus* temperature) of Mn₁-P (A, C, and E) and Mn₂-P (B, D, and F), whose surfaces chemisorbed NH₃ molecules at 220 °C and were heated to 700 °C with a ramping rate (β) of 10 °C min⁻¹ (A-B), 20 °C min⁻¹ (C-D), or 30 °C min⁻¹ (E-F). In (A-F), N_{NH3} values indicate the amounts of NH₃ chemisorbed in a per-gram of the catalysts at 220 °C. Moreover, in (A-F), NH₃-TPD profiles (black empty circles) were curved-fitted using Gaussian functions to exhibit backgrounds (wine empty circles), sub-band I (red empty circles), sub-band II (green empty circles), and sub-band III (blue empty circles), where sub-band I-III possessed the temperatures with maximum intensities of TCD signals (T_{MAX}). β and T_{MAX} values of sub-band I-III are listed in Table S7 and served to plot ln (β /T_{MAX}²) *versus* (1/T_{MAX}) for assessing NH₃ binding energies (E_{NH3}) of the catalysts at 220 °C, as shown in Fig. 4A.

Fig. S7. NH₃-TPD profiles (TCD signal *versus* temperature) of Mn₃-P (A, C, and E) and Mn₁-Sb-P (B, D, and F), whose surfaces chemisorbed NH₃ molecules at 220 °C and were heated to 700 °C with a ramping rate (β) of 10 °C min⁻¹ (A-B), 20 °C min⁻¹ (C-D), or 30 °C min⁻¹ (E-F). In (A-F), N_{NH3} values indicate the amounts of NH₃ chemisorbed in a per-gram of the catalysts at 220 °C. Moreover, in (A-F), NH₃-TPD profiles (black empty circles) were curved-fitted using Gaussian functions to exhibit backgrounds (wine empty circles), sub-band I (red empty circles), sub-band II (green empty circles), and sub-band III (blue empty circles), where sub-band I-III possessed the temperatures with maximum intensities of TCD signals (T_{MAX}). β and T_{MAX} values of sub-band I-III are listed in Table S7 and served to plot In (β/T_{MAX}^2) *versus* (1/T_{MAX}) for assessing NH₃ binding energies (E_{NH3}) of the catalysts at 220 °C, as shown in Fig. 4A.

Fig. S8. XP spectra of the catalysts in the O 1s regimes (Mn₁-P for (A); Mn₂-P for (B); Mn₃-P for (C); Mn₁-Sb-P for (D)). In (A-D), gray solid lines and black empty circles correspond to the raw spectra and those fitted using Gaussian functions, respectively, whereas red/green/blue empty circles indicate surface $O_{\beta}/O_{\alpha}/O_{\alpha}'$ species with their relative abundance being detailed in Table S5.

Fig. S9. H₂-TPR profiles (TCD signal *versus* temperature) of the catalysts (Mn₁-P for (A); Mn₂-P for (B); Mn₃-P for (C); Mn₁-Sb-P for (D)), whose surfaces were subjected to H₂ reduction at 50-800 °C with a ramping rate of 10 °C min⁻¹. In (A-D), N_{H2} values indicates the amounts of H₂ needed to reduce the components of the catalysts in use for activating the acidic/redox cycles of the SCR in a per-gram basis.

Fig. S10. O₂-TPD profiles (TCD signal *versus* temperature) of Mn₁-P (A, C, and E) and Mn₂-P (B, D, and F), whose surfaces were subjected to H₂ reduction at 300 °C with a ramping rate (β) of 10 °C min⁻¹ for vacating their O_V sites accessible to O_M species at low temperatures, coordinate O_M (1/2O₂) species to O_V sites at 50 °C, and were heated to 700 °C with β value of 10 °C min⁻¹ (A-B), 20 °C min⁻¹ (C-D), or 30 °C min⁻¹ (E-F). In (A-F), N_{OM} values denote the amounts of O_M (1/2O₂) species chemisorbed on O_V sites in a per-gram of the catalysts with N_{OM} value of Mn₁-P being set as 1.0 at 50 °C. Moreover, in (A-F), O₂-TPD profiles (black empty circles) were curved-fitted using Gaussian functions to exhibit backgrounds (wine empty circles), sub-band I (red empty circles), sub-band II (green empty circles), and sub-band III (blue empty circles), where sub-band I-III possessed the temperatures with maximum intensities of TCD signals (T_{MAX}). β and T_{MAX} values of sub-band I-III are listed in Table S9 and served to plot In (β /T_{MAX}²) *versus* (1/T_{MAX}) for assessing binding energies between O_M species and O_V sites (E_{OM}) for the catalysts at 50 °C, as shown in Fig. 6A.

Fig. S11. O₂-TPD profiles (TCD signal *versus* temperature) of Mn₃-P (A, C, and E) and Mn₁-Sb-P (B, D, and F), whose surfaces were subjected to H₂ reduction at 300 °C with a ramping rate (β) of 10 °C min⁻¹ for vacating their O_V sites accessible to O_M species at low temperatures, coordinate O_M (1/2O₂) species to O_V sites at 50 °C, and were heated to 700 °C with β value of 10 °C min⁻¹ (A-B), 20 °C min⁻¹ (C-D), or 30 °C min⁻¹ (E-F). In (A-F), N_{OM} values denote the amounts of O_M (1/2O₂) species chemisorbed on O_V sites in a per-gram of the catalysts with N_{OM} value of Mn₁-P being set as 1.0 at 50 °C. Moreover, in (A-F), O₂-TPD profiles (black empty circles) were curved-fitted using Gaussian functions to exhibit backgrounds (wine empty circles), sub-band I (red empty circles), sub-band II (green empty circles), and sub-band III (blue empty circles), where sub-band I-III possessed the temperatures with maximum intensities of TCD signals (T_{MAX}). β and T_{MAX} values of sub-band I-III are listed in Table S9 and served to plot In (β /T_{MAX}²) *versus* (1/T_{MAX}) for assessing binding energies between O_M species and O_V sites (E_{OM}) for the catalysts at 50 °C, as shown in Fig. 6A.

Fig. S12. H₂O adsorption isotherms of the catalysts (Mn_1 -P for (A); Mn_2 -P for (B); Mn_3 -P for (C); Mn_1 -Sb-P for (D)) recorded at 10 °C (black empty circles), 25 °C (red empty circles), and 40 °C (green empty circles). H₂O adsorption isotherms of the catalysts were simulated using Toth fitting (gray dashed lines), whose coefficients are specified in Table S10, whereas H₂O-accessible BET surface areas ($S_{BET, H2O}$) of the catalysts at 10-40 °C are listed in inset tables.

Fig. S13. NH₃-TPD profiles (TCD signal *versus* temperature) of Mn₁-Sb-S (A) and V₂O₅-WO₃ (B), whose surfaces chemisorbed NH₃ molecules at 220 °C and were heated to 700 °C with a ramping rate (β) of 10 °C min⁻¹. In (A-B), N_{NH3} values indicate the amounts of NH₃ chemisorbed in a per-gram of the catalysts at 220 °C.

Fig. S14. SO₂-TPD profiles (SO₂ concentration released (C_{SO2}) *versus* temperature) of Mn₁-Sb-P (A, C, and E) and V₂O₅-WO₃ (B, D, and F), whose surfaces chemisorbed SO₂ molecules at 220 °C and were heated to 900 °C with a ramping rate (β) of 10 °C min⁻¹ (A-B), 15 °C min⁻¹ (C-D), or 20 °C min⁻¹ (E-F). In (A-F), N_{SO2} values indicate the amounts of SO₂ chemisorbed in a per-gram of the catalysts at 220 °C. Moreover, in (A-F), SO₂-TPD profiles (black empty circles) were curved-fitted using Gaussian functions to exhibit backgrounds (wine empty circles), sub-band I (red empty circles), sub-band II (green empty circles), sub-band III (blue empty circles), sub-band IV (cyan empty circles), and sub-band V (magenta empty circles), where sub-band I-V possessed the temperatures with maximum intensities of C_{SO2} values being released (T_{MAX}). β and T_{MAX} values of sub-band I-V are listed in Table S11 and served to plot ln (β/T_{MAX}^2) *versus* (1/T_{MAX}) for assessing SO₂ binding energies (E_{SO2}) of the catalysts at 220 °C, as shown in Fig. 8A.

Fig. S15. TGA profiles (weight percent *versus* temperature) of AS/ABS-poisoned Mn₁-Sb-P (A) and V₂O₅-WO₃ (B) under an Ar. In (A-B), values shown with arrows correspond to the quantities of AS/ABS pertaining to the poisoned catalysts. Signals of SO₂ released *versus* temperature for AS/ABS-poisoned Mn₁-Sb-P (C) and V₂O₅-WO₃ (D) subjected to pyrolysis under an Ar. In (C-D), temperatures denote the onsets of SO₂ signal evolution. AS/ABS poison environments: 800 ppm NO_x; 800 ppm NH₃; 500 ppm SO₂; 3.0 vol. % O₂; 5.4 vol. % H₂O; 180 °C; 30 hours; catalysts sieved with sizes of 300-425 µm; GHSV of 60,000 hr⁻¹; total flow rate of 500 mL min⁻¹; balanced by a N₂. AS/ABS pyrolysis environments: total flow rate of 50 mL min⁻¹; ramping rate of 5 °C min⁻¹; under an Ar.

Fig. S16. Arrhenius plot (In (-*r*_{ABS}) *versus* 1/T_{REACTION}) of Mn₁-Sb-S, where -*r*_{ABS}, T_{REACTION}, R², E_{BARRIER}/*K*'_{APP,0} indicate ABS consumption rate, reaction temperature, regression factor, and energy barrier/lumped collision frequency needed to activate ABS pyrolysis on Mn₁-Sb-S surface, respectively. In addition, N_{AS/ABS} and T_{ONSET} correspond to the amount (wt. %) of AS/ABS inherent to the poisoned Mn₁-Sb-S and the onset of SO₂ signal evolution monitored during ABS pyrolysis of the poisoned Mn₁-Sb-S via TGA-MASS technique, respectively. AS/ABS poison environments: 800 ppm of NO_X; 800 ppm of NH₃; 500 ppm of SO₂; 3.0 vol. % O₂; 7.7 vol. % H₂O; 180 °C; 30 hours; catalysts sieved with sizes of 300-425 µm; space velocity of 60,000 hr⁻¹; total flow rate of 500 mL min⁻¹; balanced by a N₂. AS/ABS pyrolysis environments: total flow rate of 50 mL min⁻¹; ramping rate of 2 °C min⁻¹; under an Ar. Dataset is reprinted in part with permission from ref. [2]. Copyright 2022 American Chemical Society.

References

- 1. J. Kim, D. H. Kim and H. P. Ha, J. Hazard. Mater., 2020, 397, 122671.
- 2. J. Kim, D. H. Kim, J. Park, K. Jeong and H. P. Ha, ACS Catal., 2022, 12, 2086-2107.
- 3. S. Lee, J.-H. Lee, H. P. Ha and J. Kim, Chem. Mater., 2022, 34, 1078-1097.
- 4. S. Lee, H. P. Ha, J.-H. Lee and J. Kim, J. Mater. Chem. A, 2023, 11, 12062-12079.
- 5. S. Lee, H. P. Ha, J.-H. Lee and J. Kim, J. Hazard. Mater., 2023, 460, 132278.
- 6. S. Lee, J. Choi, H. P. Ha, J.-H. Lee, J. Park and J. Kim, ACS Catal., 2024, 14, 3349-3368.
- 7. H. J. An, D. H. Kim, H. P. Ha and J. Kim, *J. Mater. Chem. A*, 2021, **9**, 8350-8371.
- 8. J. Kim, K. B. Nam and H. P. Ha, J. Hazard. Mater., 2021, 416, 125780.
- 9. J. Kim, Y. J. Choe, S. H. Kim, I.-S. Choi and K. Jeong, JACS Au, 2021, 1, 1158-1177.
- 10. Y. J. Choe, S. H. Kim, K. Jeong and J. Kim, *Chem. Eng. J.*, 2023, **455**, 140537.
- 11. Y. J. Choe, S. Lee, M. Kim, S. H. Kim, I.-S. Choi, K. Jeong and J. Kim, Sep. Purif. Technol., 2023, 310, 123146.
- 12. M. Kim, J. Park, S. H. Kim, J.-H. Lee, K. Jeong and J. Kim, Carbon, 2023, 203, 630-649.
- 13. M. Kim, M. Al Mamunur Rashid, Y. J. Choe, S. H. Kim, J.-H. Lee, K. Jeong and J. Kim, *J. Mater. Chem. A*, 2023, **11**, 9436-9454.
- 14. J. Kim, S. Lee and H. P. Ha, ACS Catal., 2021, 11, 767-786.