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1. Supplemental experimental procedures

1.1 chemicals

Mesitylene, 1,4-Dioxane, N,N-Dimethylacetamide were obtained from 
Innochem. 4,4',4''-(1,3,5-Triazine-2,4,6-triyl)trianiline (Tz), 2-Hydroxy-1,3,5-
benzenetricarboxaldehyde (HBZ), 2,4-Dihydroxy-1,3,5-
benzenetricarboxaldehyde (DHBZ), 1,3,5-Triformylphloroglucinol (THBZ) were 
obtained from Shanghai Tensus Bio-tech Co., Ltd. All chemicals were used as 
received and without further purification.

1.2 Synthesis procedures

Synthesis of Tz-HBZ: A Pyrex tube (10 mL) was charged with 4,4',4''-(1,3,5-
Triazine-2,4,6-triyl)trianiline (53 mg, 0.15 mmol) and 2-Hydroxy-1,3,5-
benzenetricarboxaldehyde (26 mg, 0.15 mmol), mesitylene (1.5 mL), 1,4-
dioxane (1.5 mL) and aqueous acetic acid (0.5 mL, 6 M). The mixture was 
ultrasonicated for two minutes and then flash frozen at 77 K (liquid N2 bath) and 
degassed through three freeze-pump-thaw cycles and sealed under vacuum 
using a Schlenk line and oil pump. The tube was heated at 120°C for 5 days. 
After cooling to room temperature, the precipitate was washed with DMF and 
then the solvent was exchanged with acetone 6 times. The powder was 
collected and dried at 120°C under vacuum overnight. Anal. Calcd for 
(C30H18N6O)n: C, 75.31; H, 3.77; N, 17.57. Found: C, 58.54; H, 5.48; N, 14.47.
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Figure S1. Scheme of the synthesis of Tz-HBZ.

Synthesis of Tz-DHBZ: A Pyrex tube (10 mL) was charged with 4,4',4''-(1,3,5-
Triazine-2,4,6-triyl)trianiline (53 mg, 0.15 mmol) and 2-Hydroxy-1,3,5-
benzenetricarboxaldehyde (30 mg, 0.15 mmol), N,N-Dimethylacetamide (1.5 
mL), 1,4-dioxane (0.75 mL) and aqueous acetic acid (0.25 mL, 6 M). The 
mixture was ultrasonicated for two minutes and then flash frozen at 77 K (liquid 
N2 bath) and degassed through three freeze-pump-thaw cycles and sealed 
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under vacuum using a Schlenk line and oil pump. The tube was heated at 
120°C for 5 days. After cooling to room temperature, the precipitate was 
washed with DMF and then the solvent was exchanged with acetone 6 times. 
The powder was collected and dried at 120°C under vacuum overnight. Anal. 
Calcd for (C30H18N6O2)n: C, 70.59; H, 3.53; N, 16.47. Found: C, 51.67; H, 5.91; 
N, 12.22.
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Figure S2. Scheme of the synthesis of Tz-DHBZ.

Synthesis of Tz-THBZ: A Pyrex tube (10 mL) was charged with 4,4',4''-(1,3,5-
Triazine-2,4,6-triyl)trianiline (53 mg, 0.15 mmol) and 1,3,5-
Triformylphloroglucinol (33 mg, 0.15 mmol), mesitylene (1.5 mL), 1,4-dioxane 
(1.5 mL) and aqueous acetic acid (0.5 mL, 6 M). The mixture was ultrasonicated 
for two minutes and then flash frozen at 77 K (liquid N2 bath) and degassed 
through three freeze-pump-thaw cycles and sealed under vacuum using a 
Schlenk line and oil pump. The tube was heated at 120°C for 5 days. After 
cooling to room temperature, the precipitate was washed with DMF and then 
the solvent was exchanged with acetone 6 times. The powder was collected 
and dried at 120°C under vacuum overnight. Anal. Calcd for (C30H18N6O3)n: C, 
68.44; H, 3.42; N, 15.97. Found: C, 59.78; H, 5.48; N, 14.47.
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Figure S3. Scheme of the synthesis of Tz-THBZ.
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2. Characterization methods

Fourier transform infrared (FT-IR) spectra were measured in transmission on a 
Tensor 27 FT-IR spectrometer (Bruker) using KBr pellets at room temperature. 
The thermal properties of the polymer networks were performed using a 
differential thermal analysis instrument (Q1000DSC + LNCS + FACS 
Q600SDT) over the temperature range from 30 to 800°C under a nitrogen 
atmosphere with a heating rate of 10°C min-1. Element analysis was obtained 
by an EURO EA3000 Element Analyzer. The water contact angle was carried 
out by a video optical contact angle tester (Dataphysics-OCA20). Solid-state 
13C-NMR spectra were recorded on a JEOL RESONANCE ECZ 400R NMR 
spectrometer at a MAS rate of 12 kHz. Powder X-ray diffraction measurements 
(PXRD) were carried out on an X-ray Diffractometer (D/Max-3c). The 
morphology analysis was carried out using a field emission scanning electron 
microscope (SEM) (JSM-6700F) and high-resolution transmission electron 
microscopy (HR-TEM) (TECNAI G2 F30S). The UV-Vis absorption spectra of 
the COFs were obtained on a Scan UV-Vis spectrophotometer (UV-Lambda 
950, PerkinElmer, US). Surface areas and pore size distributions were 
measured by nitrogen adsorption and desorption at 77.3 K using an ASAP 
2420-4 (Micromeritics) volumetric adsorption analyzer. Time-correlated single 
photon counting (TCSPC) measurements were conducted using a single 
photon counting controller (Fluorohub, Horiba Scientific) to collect the 
photoluminescence decay profiles. Spin trapping electron paramagnetic 
resonance (EPR) measurement was performed by ESR spectrometer (Bruker, 
EMXmicro-6/1) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was used as a 
spin-trapping reagent.

3. Photo-electrochemical analysis

Photocurrent measurement 

A three-electrode cell was employed to measure the photocurrent on a 
CHI660E (Chenhua, Shanghai) electrochemical workstation. The working 
electrode was prepared by coating the mixture slurry of the polymer catalyst. 
5% Nafion solution and ethanol as the binder on FTO, where the coating area 
was 1 cm2. The working electrode was dried at 50°C for 0.5 hours before the 
measurement. A platinum plate and a saturated calomel electrode were used 
as the counter electrode and reference electrode, respectively and 0.5 M 
sodium sulfate solution was used as the electrolyte. A 300 W Xenon lamp was 
applied to illuminate the sample.
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Electrochemical impedance measurement

A three-electrode cell was employed to measure the photocurrent and cyclic 
voltammetry on a CHI660E (Chenhua, Shanghai) electrochemical workstation. 
The working electrode, counter electrode and reference electrode are glassy 
carbon electrode, platinum plate and a saturated calomel electrode, 
respectively. The electrolyte was 0.5M sodium sulfate solution.

Mott-Schottky measurement 

A three-electrode cell was employed to conduct the Mott-Schottky 
measurement on a CHI660E (Chenhua, Shanghai) electrochemical 
workstation. The working electrode was prepared by mixing ground polymer (2 
mg) with isopropanol (0.3 mL) containing 5wt% Nafion and then was sonicated 
for 10 min. A 200 μL sample was taken and deposited on FTO with an area of 
1 cm2. A platinum plate and a saturated calomel electrode were employed as 
the counter electrode and reference electrode, respectively. The electrolyte 
was 0.2M sodium sulfate solution.

4. Photocatalytic experiments

The as-prepared COF photocatalyst (10 mg) was fully dispersed in deionized 
water (50 mL) by ultrasonicating for 10 min. Then, the mixture solution was 
removed to a reaction flask and illuminated by a 300 W Xenon lamp source 
(Microsolar 300) with a filter (λ > 420 nm) and stirred under an air atmosphere. 
Circulating cooling water was employed to keep the photocatalytic reaction 
temperature at 25°C. After the reaction, 1 mL solution was sampled with an 
injection syringe and then filtered with a 0.2 μm Millipore filter to remove the 
photocatalyst. The amount of H2O2 produced was analyzed by using the KI 
titrimetric method.

The external quantum efficiency (EQE) measurement for H2O2 evolution used 
50 mg polymer in deionized water (50 mL) and was measured with 
monochromatic light obtained by using bandpass filters of 420, 450, 500, 550 
and 600 nm, respectively. The irradiation area was controlled as 4×3.14 cm2. 
EQE for H2O2 production at monochromatic light irradiation was estimated as 
below equation.

EQE(%) =
2 × Number of evolved H2O2 molecules

Number of incident photons
 =

2 × M × NA

S × P × t ×
λ

h × c

× 100%

Where, M is the amount of hydrogen peroxide molecules (mol), NA is Avogadro 
constant (6.022 × 1023 /mol), h is the Planck constant (6.626 × 10–34 J·s), c is 
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the speed of light (3 × 108 m/s), S is the irradiation area (cm2), P is the intensity 
of irradiation light (W/cm2), t is the photoreaction time (s), λ is the wavelength 
of the monochromatic light (m).

The solar-to-chemical energy conversion (SCC) efficiency measurement was 
conducted in a quartz vessel. The 50 mg catalyst was well dispersed in 50 mL 
deionized water and degassed by O2 bubbling for 10 min before being sealed 
in a vessel. A Xenon solar simulator was used as the light source (AM 1.5G, 
100 mW cm-2). The reaction temperature was kept at 25°C. The SCC efficiency 
was calculated via the following equation:

SCC (%) =
[ΔG for H2O2 generation ( J

mol)] × [H2O2 produced (mol)]

[total input energy (W)] × [reaction times (s)]
 × 100

Where, the free energy (∆G) for H2O2 formation is 117 kJ mol-1, the irradiance 
of the spectrum is 1000 W m-2 and the irradiated area is 3.14 × 10-4 m2.

5. The theoretical reaction pathway of H2O2 generation 

Oxygen reduction reaction (ORR) Water oxidation reaction (WOR)

1. 2e- pathway
O2 + 2H+ +2e- → H2O2

2. 4e- pathway
O2 + 4H+ + 4e- → 2H2O

3. Two-step 1e- pathway
O2 + e- → •O2

-

•O2
- + 2H+ + e- → H2O2

（ +0.68 V vs NHE, pH=0（

（ +1.23 V vs NHE, pH=0（

（ -0.33 V vs NHE, pH=0（

（ +1.23 V vs NHE, pH=0（

1. 2e- pathway
2H2O + 2h+ → H2O2 + 2H+

2. 4e- pathway
2H2O + 4h+ → O2 + 4H+

3. Two-step 1e- pathway

H2O + h+ → •OH + H+

2•OH → H2O2

（ +1.76 V vs NHE, pH=0（

（ +1.23 V vs NHE, pH=0（

（ +2.73 V vs NHE, pH=0（

Figure S4. Energy diagrams for ORR and WOR pathways.
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5. Supporting data
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Figure S5. PXRD patterns of experimental (blue) and simulated (red and black) 
(a) Tz-HBZ, (b) Tz-DHBZ and (c) Tz-THBZ.
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Figure S6. Transmission FT-IR spectra of the COFs and reactant monomers 
(a) Tz-HBZ, (b) Tz-DHBZ and (c) Tz-THBZ.
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Figure S7. Nitrogen adsorption (filled symbols) and desorption (open symbols) 
isotherms were recorded at 77.3 K. The inset shows the calculated pore size 
distribution. (a) Tz-HBZ, (b) Tz-DHBZ and (c)Tz-THBZ.
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Tz-HBZ Tz-DHBZ Tz-THBZ
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Figure S8. SEM images of the COFs: (a) Tz-HBZ, (b) Tz-DHBZ and (c) Tz-
THBZ.
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Figure S9. TEM images of the COFs: (a) Tz-HBZ, (b) Tz-DHBZ and (c) Tz-
THBZ.
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Figure S10. The thermogravimetric analysis traces the COFs under a nitrogen 
atmosphere.
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Figure S11. PXRD patterns of COFs after soaked in 1M concentration H2O2 for 
48 hours. (a) Tz-HBZ, (b) Tz-DHBZ and (c)Tz-THBZ.
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Figure S12. Tauc plots of the transformed Kubelka−Munk function vs. energy 
of the COFs.
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Figure S13. Mott−Schottky plot of the (a) Tz-HBZ, (b) Tz-DHBZ and (c)Tz-
THBZ.
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Figure S14. The HOMO and LUMO orbital distributions of the simplified Tz-
HBZ, Tz-DHBZ and Tz-THBZ fragments from DFT simulation.

Figure S15. Transient photocurrent of the COFs.
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Figure S16. EIS spectra of the COFs.
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Figure S17. Photocatalytic reaction of COFs and physical mixtures of their 

ingredients (10 mg catalyst or monomer (the mass ratio of physical mixture is 

1:1) in 50 mL water under visible light (λ > 420 nm) for 1 hour)).
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Figure S18. Photocatalytic activity of Tz-THBZ with different amounts of 
catalyst in 50 mL water under visible light (λ > 420 nm) for 1 hour.
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Figure S19. Photocatalytic activity of Tz-THBZ produced from three different 
batches (10 mg catalyst in 50 mL water under visible light (λ > 420 nm)).
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Figure S20. Photocatalytic cycle performance of Tz-HBZ and Tz-DHBZ (50 mg 
catalyst in 50 mL water under visible light, λ > 420 nm, 10 hours for each cycle).
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Figure S21. 1H-NMR of filtered photocatalytic reaction solution of COF in 
DMSO-d6 after cycle experiment. (a) Tz-HBZ, (b) Tz-DHBZ and (c) Tz-THBZ.
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Figure S22. FT-IR spectra of COF after cycle experiment. (a) Tz-HBZ, (b) Tz-
DHBZ and (c) Tz-THBZ
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Figure S23. Photocatalytic H2O2 production performances for Tz-HBZ, Tz-
DHBZ and Tz-THBZ (10 mg catalyst in 50 mL water at N2 atmosphere under 
visible light (λ > 420 nm)).
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Figure S24. Photocatalytic H2O2 production performances for Tz-HBZ, Tz-
DHBZ and Tz-THBZ (10 mg catalyst in 50 mL 1mM KBrO3 solution at N2 
atmosphere under visible light (λ > 420 nm)).
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Figure S25. EPR experiments for Tz-THBZ using DMPO as the electron-
trapping agent.
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Figure S26. Electrostatic surface potential maps of COFs.
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Figure S27. DFT-calculated adsorption configuration of (a) O2 and (b) H2O on 
enol-formed Tz-THBZ.

6. Supporting table

Table S1. Summary of the photocatalytic hydrogen peroxide production performance of various reported organic photocatalysts.

Photocatalyst λ (nm) Dosage (g/L) Reaction solution* H2O2 production 
(μM/h)

Stability (hour) EQE (%) SCC (%) Ref.

Tz-THBZ ≥420 1 H2O 6 cycles for 60 h 5.5@400 nm 0.36 This work

CHF-DPDA ≥420 2 water 3450 3 cycles for 18 h 16.0@420 nm 0.78 [1]

COF-N32 ≥420 0.5 water 302.5 12 h 6.2@459 nm 0.31 [2]

SO3H-COF ≥400 0.1 water 301.5 5 cycles for 4.17 h 8.7@400 nm 0.41 [3]

DE7-M ≥420 1.7 water 2444 5 cycles for 10 h 8.70@420 nm 0.23 [4]
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COF-TfpBpy ≥420 0.5 water 1042 5 cycles for 40 h 8.10@420 nm 0.57 [5]

Nv–C≡N–CN ≥420 1 water 137 5 cycles for 5 h 3.10@400 nm 0.23 [6]

PAF-363 420 1 water 78.6 12 h 5.3@420 nm - [7]

TAPD-(Me)2 ≥420 4 H2O:EtOH (9:1) 316 5 cycles for 10 h -- -- [8]

DCNS ≥400 1 H2O:EtOH (9:1) 3080 4 cycles for 12 h 6.80@400 nm -- [9]

TPB-DMTP-COF ≥420 0.2 water 330 5 cycles for 5 h 18.4@420 nm 0.76 [10]

DVA-COF 420 0.5 H2O:BA (9:1) 4225 16 h 2.84@420 nm 0.08 [11]

g-C3N4/PDI51 ≥420 1.7 water 34.6 -- 2.60@420 nm -- [12]

5Cv@g-C3N4 ≥420 1 H2O:EtOH (9:1) 7010 5 cycles for 5 h 14.3@365 nm -- [13]

RF/P3HT ≥300 1.7 water 1013.1 10 cycles for 10 h 10.5@420 nm 1.00 [14]

TF50-COF ≥400 0.1 H2O:EtOH (9:1) 172 -- 5.10@400 nm 0.17 [15]

Bpt-CTF - 0.2 water 654 10 cycles for 10 h 8.60@400 nm 0.20 [16]

TBTN-COF 420 0.125 water 1376.6 5 cycles for 5 h 7.6@420 nm - [17]

Py-Da-COF ≥420 1 water 461 4 cycles for 8 h 2.40@420 nm 0.09 [18]

4PE-N-S ≥420 0.25 water 393.5 5 cycles for 5 h -- -- [19]

CoPc-BTM-COF ≥400 0.1 H2O:EtOH (9:1) 209.6 4 cycles for 4 h 7.20@630 nm -- [20]

NMT400 AM 1.5G 0.4 H2O:EtOH (9:1) 678 6 cycles for 6 h 0.50@475 nm -- [21]

PMCR-1 ≥420 0.45 water 656.8 -- 14.0@420 nm -- [22]

P-TAME ≥420 1 PB:H2O (2:9) 13500 5 cycles for 20 h -- -- [23]

COF-TTA-TTTA ≥420 0.3 water 721.8 6 cycles for 24 h -- -- [24]

PEI/C3N4 AM 1.5G 1 water 208.1 3 cycles for 3 h 2.12@420 nm 0.045 [25]

CN4 ≥420 0.5 H2O:IPA (9:1) 28.7 3 cycles for 3 h 27.8@420 nm -- [26]

TB-COF ≥400 0.125 water 706.5 5 cycles for 5 h 3.45@420 nm 1.08 [27]

FS-COFs ≥400 0.25 water 375.4 4 cycles for 8 h 6.21@420 nm -- [28]

TpDz ≥420 0.167 water 1221 4 cycles for 4 h 11.9@420 nm 0.62 [29]

* EtOH: ethanol; IPA: isopropanol; BA: benzyl alcohol; PB: phenylcarbinol; TEOA: triethanolamine.

7. Computational details

All DFT calculations were performed using the CP2K code.30 The calculations 
utilized mixed Gaussian and plane wave basis sets. Core electrons were 
described using norm-conserving Goedecker-Teter-Hutter pseudopotentials,31-
33 while the valence electron wavefunction was expanded in a double-zeta basis 
set with polarization functions,34 supplemented by an auxiliary plane wave basis 
set with an energy cutoff of 400 eV. The Perdew, Burke, and Enzerhof (PBE)35 
generalized gradient approximation exchange-correlation functional was 
applied. Each configuration was optimized using the Broyden-Fletcher-
Goldfarb-Shanno (BGFS) algorithm with SCF convergence criteria set at 
1.0×10-6 au. To include the long-range van der Waals dispersion interaction, 
the DFT-D3 scheme36 with an empirical damped potential term was 
incorporated into the energies calculated from the exchange-correlation 
functional in all simulations.
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The adsorption energy between the COF and the H2O/O2 adsorbates can be 
calculated using the following equation:

 =  -  -     (S1)∆𝐸 𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒/𝐶𝑂𝐹 𝐸𝐶𝑂𝐹 𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒

In Eq. (S1),  and  represent the total energies of the COF with 𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒/𝐶𝑂𝐹 𝐸𝐶𝑂𝐹

and without the adsorption of the adsorbates, respectively.  is the total 𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒
energy of the H2O or O2 adsorbates. 

8. References

1. H. Cheng, H. Lv, J. Cheng, L. Wang, X. Wu and H. Xu, Adv. Mater., 2022, 
34, 2107480.

2. F. Liu, P. Zhou, Y. Hou, H. Tan, Y. Liang, J. Liang, Q. Zhang, S. Guo, M. 
Tong and J. Ni, Nat. Commun., 2023, 14, 4344.

3. L. Li, X. Lv, Y. Xue, H. Shao, G. Zheng and Q. Han, Angew. Chem. Int. Ed., 
2024, 63, e202320218.

4. L. Liu, M.-Y. Gao, H. Yang, X. Wang, X. Li and A. I. Cooper, J. Am. Chem. 
Soc., 2021, 143, 19287-19293.

5. M. Kou, Y. Wang, Y. Xu, L. Ye, Y. Huang, B. Jia, H. Li, J. Ren, Y. Deng, J. 
Chen, Y. Zhou, K. Lei, L. Wang, W. Liu, H. Huang and T. Ma, Angew. Chem. 
Int. Ed., 2022, 61, e202200413.

6. X. Zhang, P. Ma, C. Wang, L. Gan, X. Chen, P. Zhang, Y. Wang, H. Li, L. 
Wang, X. Zhou and K. Zheng, Energ. Environ. Sci., 2022, 15, 830-842.

7. L. Cao, C. Wang, H. Wang, X. Xu, X. Tao, H. Tan and G. Zhu, Angew. 
Chem. Int. Ed., 2024, 63, e202402095.

8. C. Krishnaraj, H. Sekhar Jena, L. Bourda, A. Laemont, P. Pachfule, J. 
Roeser, C. V. Chandran, S. Borgmans, S. M. J. Rogge, K. Leus, C. V. Stevens, 
J. A. Martens, V. Van Speybroeck, E. Breynaert, A. Thomas and P. Van Der 
Voort, J. Am. Chem. Soc., 2020, 142, 20107-20116.

9. Q. He, B. Viengkeo, X. Zhao, Z. Qin, J. Zhang, X. Yu, Y. Hu, W. Huang and 
Y. Li, Nano Res. 2023, 16, 4524-4530.

10. L. Li, L. Xu, Z. Hu and J. C. Yu, Adv. Funct. Mater., 2021, 31, 2106120.

11. H. Yu, F. Zhang, Q. Chen, P.-K. Zhou, W. Xing, S. Wang, G. Zhang, Y. 
Jiang and X. Chen, Angew. Chem. Int. Ed., 2024, 63, e202402297.

12. Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka 
and T. Hirai, Angew. Chem. Int. Ed., 2014, 53, 13454-13459.



21

13. L. Chen, C. Chen, Z. Yang, S. Li, C. Chu and B. Chen, Adv. Funct. Mater., 
2021, 31, 2105731.

14. Y. Shiraishi, M. Matsumoto, S. Ichikawa, S. Tanaka and T. Hirai, J. Am. 
Chem. Soc., 2021, 143, 12590-12599.

15. H. Wang, C. Yang, F. Chen, G. Zheng and Q. Han, Angew. Chem. Int. Ed., 
2022, 61, e202202328.

16. C. Wu, Z. Teng, C. Yang, F. Chen, H. B. Yang, L. Wang, H. Xu, B. Liu, G. 
Zheng and Q. Han, Adv. Mater., 2022, 34, 2110266.

17. E. Zhou, F. Wang, Y. Hui and Y. Wang, Angew. Chem. Int. Ed., 2024, 63, 
e202400999.

18. J. Sun, H. Sekhar Jena, C. Krishnaraj, K. Singh Rawat, S. Abednatanzi, J. 
Chakraborty, A. Laemont, W. Liu, H. Chen, Y.-Y. Liu, K. Leus, H. Vrielinck, V. 
Van Speybroeck and P. Van Der Voort, Angew. Chem. Int. Ed., 2023, 62, 
e202216719.

19. M. Deng, J. Sun, A. Laemont, C. Liu, L. Wang, L. Bourda, J. Chakraborty, 
K. Van Hecke, R. Morent, N. De Geyter, K. Leus, H. Chen and P. Van Der 
Voort, Green Chem., 2023, 25, 3069-3076.

20. Q. Zhi, W. Liu, R. Jiang, X. Zhan, Y. Jin, X. Chen, X. Yang, K. Wang, W. 
Cao, D. Qi and J. Jiang, J. Am. Chem. Soc., 2022, 144, 21328-21336.

21. C. Yang, S. Wan, B. Zhu, J. Yu and S. Cao, Angew. Chem. Int. Ed., 2022, 
61, e202208438.

22. P. Das, J. Roeser and A. Thomas, Angew. Chem. Int. Ed., 2023, 62, 
e202304349.

23. Z. Luo, X. Chen, Y. Hu, X. Chen, W. Lin, X. Wu and X. Wang, Angew. 
Chem. Int. Ed., 2023, 62, e202304875.

24. F. Tan, Y. Zheng, Z. Zhou, H. Wang, X. Dong, J. Yang, Z. Ou, H. Qi, W. 
Liu, Z. Zheng and X. Chen, CCS Chem., 2022, 4, 3751-3761.

25. X. Zeng, Y. Liu, Y. Kang, Q. Li, Y. Xia, Y. Zhu, H. Hou, M. H. Uddin, T. R. 
Gengenbach, D. Xia, C. Sun, D. T. McCarthy, A. Deletic, J. Yu and X. Zhang, 
ACS Catal., 2020, 10, 3697-3706.

26. C. Feng, L. Tang, Y. Deng, J. Wang, J. Luo, Y. Liu, X. Ouyang, H. Yang, J. 
Yu and J. Wang, Adv. Funct. Mater., 2020, 30, 2001922.

27. J.-Y. Yue, L.-P. Song, Z.-X. Pan, P. Yang, Y. Ma, Q. Xu and B. Tang, ACS 
Catalysis, 2024, 14, 4728-4737.

28. Y. Luo, B. Zhang, C. Liu, D. Xia, X. Ou, Y. Cai, Y. Zhou, J. Jiang and B. 
Han, Angew. Chem. Int. Ed., 2023, 62, e202305355.



22

29. Q. Liao, Q. Sun, H. Xu, Y. Wang, Y. Xu, Z. Li, J. Hu, D. Wang, H. Li and K. 
Xi, Angew. Chem. Int. Ed., 2023, 62, e202310556.

30. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and 
J. Hutter, Comput. Phys. Commun., 2005, 167, 103-128.

31. S. Goedecker, M. Teter and J. Hutter, Phys. Rev. B, 1996, 54, 1703-1710.

32. C. Hartwigsen, S. Goedecker and J. Hutter, Phys. Rev. B, 1998, 58, 3641-
3662.

33. M. Krack and M. Parrinello, Phys. Chem. Chem. Phys., 2000, 2, 2105-
2112.

34. J. VandeVondele and J. Hutter, J. Chem. Phys., 2007, 127, 114105.

35. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

36. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 
154104.


