Mono-methyl viologen: A promising anolyte for alkaline aqueous redox flow batteries

Devendra Y. Nikumbe^{a,d}, R. Govindha Pandi^c, Anusuya Saha^{b,d}, Bhavana Bhatt^a, Surjit Bhai^{b,d}, Bishwajit Ganguly^{b,d}, Shanmugam Senthil Kumar^c and Rajaram K. Nagarale^{a,d}

^a Electro Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India

^bAnalytical And Environmental Science Division And Centralized Instrument Facility CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India

^c-Electrodics and Electro Catalysis Division, CSIR - Central Electrochemical Research Institute (CECRI), Karaikudi, - 630 003, India

^dAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, IndiaExperimental Details

Fig. S1. (a) ¹H NMR of synthetic MMV, and (b) ¹³C NMR of synthetic MMV

Fig. S2 (a) 1 H NMR of synthetic DMV, (b) 13 C NMR of synthetic DMV

Table S1. Properties of Interpolymer anion exchange membrane (IPAEM)¹.

Membrane	Structure properties	Ion- exchange capacity (meq/g)	Thickness (mm)	Water content (%)	Area resistance (Ω cm²)	Permselectivity (%)
IPAEM	Anion LDPE/HDPE	0.8–0.9	0.16-0.18	15	2.0-4.0	92

Fig. S3 Parameter leading to capacity loss (a) (i) Side reaction of DMV as well as dimer formation (ii) confirmation of side product by ¹H NMR. (b) UV-spectra of crossover electrolyte

Fig. S4 Parameter leading to capacity loss (a) Side reactions of viologen (i) SN² reaction, (ii) nucleophilic aromatic substitution reaction, (iii) confirmation of side product i and ii by ¹H NMR. (b) UV-spectra of crossover electrolyte

Fig. S5 degradation of mechanism of MMV in aqueous alkaline medium

Negolyte/ posolyte	Solubility in water	Concentration	Current Density,	Capacity retention	Cell cycle	Peak power	Ref.
· ·			CE, EE		number	density	
AQDS/SBQ	2 M	1 M H ₂ SO ₄	98%, NA	99.95% per cycle	25	-	2
2,6-DHAQ /Fe(CN) ₆ ⁴⁻	1 M	1 М КОН	100 mA cm ⁻² 99%, 84%	99.9% per cycle	100	450 mW cm ⁻²	3
DHBQ/K ₄ Fe (CN) ₆	> 8 M in 1 M KOH	1 М КОН	100 mA cm ⁻² 99%, 65%	99.76% per cycle	150	300, 164, and 137 mW cm ⁻²	4
Alloxazine/ K ₄ Fe(CN) ₆ + K ₃ Fe(CN) ₆	1 M	1 М КОН	100 mA cm ⁻² 99.7%,	99.98% per cycle	400	350 mW cm ⁻²	5
FMN-Na/ K4Fe(CN) ₆	1 M	1 M KOH and 1.5 M with nicotinamide additive Average	100 mA cm ⁻² 99%	99%	200	160 mW cm ⁻²	6
4-hydroxy TEMPO/ MVi ₂	2.1 M	1.5 M NaCl	40 mA cm ⁻² 99%, 70.9%	99%	100	NA	7
4-sulfate- TEMP/ Zn	1 M	1 M in 2 M ZnCl ₂ + 2 M NH ₄ Cl	40 mA cm ⁻² 98.1%, 65%	93.6%	1100	NA	8
MV/ FcNCl	3.5 M	1 M NH4Cl	$\begin{array}{c} 60 \text{ mA} \\ \text{cm}^{-2} > \\ 99\%, \\ 65\% \end{array}$	81%,	500	100 mWcm ⁻²	9
BTMAP ₂ +- Vi2+/ BTMAP ₂ +- Fc	2.0 M	1 M NaCl	$50 \text{ mA} \\ \text{cm}^{-2} > \\ 99.95\%, \\ > 65\%$	98.58%,	250	NA	10
(SPr) ₂ V/KI	2.0 M	2 M KCl	$ \begin{array}{c} 60 \text{ mA} \\ cm^{-2} > \\ 99\%, \\ 58\% \end{array} $	94.1%,	300	67.5 mW cm ⁻²	11
BSP-Vi/DS- Fc	2.0 M	0.5 M NaNO ₃	96%	90%	70	NA	12
DMV/ K4Fe(CN) ₆ + K3Fe(CN) ₆	3.5 M	0.5 M in 1 M NH ₄ Cl	80 mA cm ⁻² 98%, 57%	98.9% Per cycle	200	76 mW cm ⁻²	This work
$\frac{1}{MMV}$ $K_4Fe(CN)_6$ $+$ $K_3Fe(CN)_6$	2.5 M	0.8 M in 1 M KOH	100 mA cm ⁻² 98%, 61%	99.9% Per cycle	500	113 mW cm ⁻²	This work

Table S2. Comparison chart of All ORFBs.

Computational Methodology

All geometries of studied isodesmic reactions were fully optimized using the B3LYP/6-311++G(d,p) level of theory in the aqueous phase using the SMD solvation model¹³⁻¹⁵. The confirmation of minimum optimized geometries were carried out by analysis of positive vibrational frequencies. The binding energies were calculated using Equation 4.

Binding Energy, $(\Delta E) = E_{\text{products}} - E_{\text{reactants}}$ (4)

Where E_{products} refers to the sum of the energies of products and $E_{\text{reactants}}$ refers to the sum of the energies of reactants in studied isodesmic reactions, respectively. All the calculations were performed using the Gaussian 09 suite of program¹⁶.

References

- R. K. Nagarale, G. S. Gohil, and V. K. Shahi, Recent developments on ion-exchange membranes and electro-membrane processes, *Adv. Colloid Interface Sci.*, 119 (2006) 97-130, https://doi.org/10.1016/j.cis.2005.09.005
- K. Wedege, E. Dražević, D. Konya, and A. Bentien. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility, Scientific RepoRts, 6:39101, DOI: 10.1038/srep39101
- K. Lin, Q. Chen, M. R. Gerhardt, L. Tong, S. B. Kim, L. Eisenach, A. W. Valle, D. Hardee, R. G. Gordon, M. J. Aziz, and M. P. Marshak Alkaline quinone flow battery. Science 2015, 349, 1529–1532.
- Yang, Z. J.; Tong, L. C.; Tabor, D. P.; Beh, E. S.; Goulet, M. A.; De Porcellinis, D.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. Alkaline benzoquinone aqueous flow battery for largescale storage of electrical energy. Adv. Energy Mater. 2018, 8, 1702056.
- K. Lin, R. Gómez-Bombarelli, U. S. Beh, L. Tong, Q. Chen, A. Valle3, A. Aspuru-Guzik, M. J. Aziz, and R. G. Gordon, A redox-flow battery with an alloxazine-based organic electrolyte. Nat Energy 2016, 1, 16102.
- A. Orita, M. G. Verde, M. Sakai, and Y. S. Meng, A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 2016, 7, 13230.
- T. Liu, X. Wei, Z. Nie, V. Sprenkle, and W. Wang, A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte, Adv. Energy Mater, 2016, 6, 1501449. DOI: 10.1002/aenm.201501449
- J. Winsberg, C. Stolze, A. Schwenke, S. Muench, M. D. Hager, and U. S. Schubert, Aqueous 2,2,6,6-tetramethylpiperidine-N-oxyl catholytes for a high-capacity and high current density oxygen-insensitive hybrid-flow battery. ACS Energy Lett. 2017, 2, 411–416.

- B. Hu, C. DeBruler, Z. Rhodes, and T. L. Liu, Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage. J. Am. Chem. Soc. 2017, 139, 1207– 1214.
- Beh, E. S.; De Porcellinis, D.; Gracia, R. L.; Xia, K. T.; Gordon, R. G.; Aziz, M. J. A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett. 2017, 2, 639–644.
- 11. C. DeBruler, B. Hu, J. Moss, J. Luo, and T. L. Liu A sulfonate-functionalized viologen enabling neutral cation exchange, aqueous organic redox flow batteries toward renewable energy storage. ACS Energy Lett. 2018, 3, 663–668.
- J. Montero, W. da Silva Freitas, B. Mecheri, M. Forchetta, P. Galloni, S. Licoccia, and A. D'Epifanio, A Neutral-pH Aqueous Redox Flow Battery Based on Sustainable Organic Electrolytes, ChemElectroChem 2023, 10, e202201002, doi.org/10.1002/celc.202201002
- 13. A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639–5648.
- 14. M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265-3269.
- 15. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
- M. A. R. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, H. J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, J. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, M. I. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, J. T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr, J. A. Montgomery, V. N. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, J. C. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. E. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, R. E. S. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. L. M. O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, S. K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, D. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and J. Fox, Gaussian 09 (revision B.1), Gaussian, Inc., Wallingford, CT, 2009.