Supporting Information

Assessing the impact of antisolvent-regulated ZnCl₂ water-in-salt

electrolyte on solvation structure: a multiscale computational

validation for aqueous Zn-ion battery application

Asis Sethi,^{1,2} Chaithra Rajeev,¹ Anil Kumar U.,^{1,2} Parul Sharma,³ Anurag Prakash Sunda,^{3*} and Vishal M. Dhavale^{1,2*}

¹CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Taramani, Chennai 600 113, Tamil Nadu, India

² Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India *Email: vishal@cecri.res.in

³ Department of Chemistry, J. C. Bose University of Science and Technology, YMCA, Faridabad 121006, India *Email: anurag@jcboseust.ac.in; anurag.sunda@gmail.com

Table of Contents

Section S1: Solubility test	3
Section S2: Raman and Infrared Spectroscopy	3-4
Section S3: Spatial Distribution Function Calculation	5
Section S4: X-Ray Diffraction	5
Section S5: Field-Emission Scanning Electron Microscopy (FE-SEM)	6
Section S6: Electrochemical Characterization	6-7
Section S7: Electrochemical Impedance Spectroscopy (EIS)	7
Section S8: Galvanostatic Charge Discharge Study	7-10
Section S9: Digital Photograph of Zn-foil anode after study	10
Section S10: Scanning Electron Microscopy (SEM) images of Zn-foil after study	11
Section S11: Coordination number of different atoms	11
Section S12: Diffusion coefficients from MD simulation	12
Section S13: Efficiency of PBAR in half-cell and Zn//PBAR full cell	12

Section S1: Solubility test

Fig. S1: Solubility test of different vol.% of methanol in 10 m $ZnCl_2$ -WiSE. It depicts 10 m $ZnCl_2$ -WiSE and methanol forming a homogeneous solution without precipitation or delamination.

Section S2: Raman and Infrared Spectroscopy

Fig. S2: (a &b) Raman spectra, and (c & d) FT-IR spectra of water, methanol, 10 m ZnCl₂-WiSE, 10 m-ZnCl₂-WiSE-x% MeOH (x= 5, 10, 20) showing ZnCl₄²⁻ and C-O bond Raman shift peak, C-O bond stretching peak, O-H bond bending peak, respectively.

Fig. S3: FT-IR spectra of a mixture of pure water and different vol.% of pure methanol (a) C-O bond stretching, and (b) O-H bond bending vibration.

Fig. S4: FT-IR spectra of water, methanol, 10 m $ZnCl_2$ -WiSE and 10 m $ZnCl_2$ -WiSE-x % MeOH show the O-H bond stretching vibration shift.

Section S3: Spatial Distribution Function Calculation

Fig. S5: Spatial distribution function (SDF) calculated from MD simulations to depict water-zinc interactions for 5 m ZnCl₂-WiSE-x % MeOH with (a) x=0, (b) x=5, (c) x=10, and (d) x=15 [Colour scheme: H_2O (Ball and Stick) H-White, O-Red; Zinc Ions (Isosurface)-Yellow-green (Iso value: 0.0032 Å³)].

Section S4: X-Ray Diffraction

Fig. S6: Powder-XRD pattern of PBAR. The peaks are indexed to its JCPDS Card. No. 38-0688.

Section S5: Field-Emission Scanning Electron Microscopy (FE-SEM)

Fig. S7: Field emission scanning electron microscopy (FE-SEM) images of PBAR recorded at different magnifications.

Section S6: Electrochemical Characterization

Fig. S8: Comparative cyclic voltammogram of PBAR in different vol.% of methanol added into 1m ZnCl₂ aqueous electrolyte (1 mZA). It shows that in 10 vol.% methanol addition, the redox potential is highest, 0.910 V vs Ag/AgCl.

Fig. S9: Derivative plot of PBAR charge-discharge curve in a) 10 m ZnCl₂-WiSE-10 % MeOH, and b) 10 m ZnCl₂-WiSE.

Section S7: Electrochemical Impedance Spectroscopy (EIS)

Fig. S10: Electrochemical impedance spectroscopy (EIS) data of 10 m ZnCl₂-WiSE and 10 m ZnCl₂-WiSE -10 % MeOH.

Section S8: Galvanostatic Charge Discharge (GCD) Study

Fig. S11: Cycling stability of PBAR in 10 m $ZnCl_2$ -WiSE and 10 m $ZnCl_2$ -WiSE-10% MeOH at 3.3C-rate (1C-rate = 66 mAg⁻¹). Only discharge-specific capacity is shown here.

Fig. S12: Rate capability study comparison of PBAR in 10 m $ZnCl_2$ -WiSE (dashed line) and 10 m $ZnCl_2$ -WiSE -10% MeOH (solid line) (1C= 66 mAhg⁻¹)

Fig. S13: Comparison of the rate capability study in 10 m $ZnCl_2$ -WiSE and 10 m $ZnCl_2$ -WiSE-10% MeOH. (1C=66 mAhg⁻¹)

Fig. S14: Comparison of coulombic efficiency (CE) % of Zn//PBAR full cell, charge-discharge performed at 1C-rate (88 mAg⁻¹) in various concentrations of antisolvent-based electrolyte, 10 m ZnCl₂-WiSE-x% MeOH (x=0,2,5,10).

Fig. S15: Comparison of discharge capacity of cycling study in 10 m $ZnCl_2$ -WiSE and 10 m $ZnCl_2$ -WiSE-2% MeOH at 6C-rate (1C-rate=88mAg⁻¹)

Section S9: Digital Photograph of Zn-foil after study

Zn foil in 10 m ZnCl₂-WiSE Zn foil in 10 m ZnCl₂-2% WiSE

Fig. S16: Digital photographs of Zn-foil after cycling in 10 m ZnCl₂-WiSE (left), and 10 m ZnCl₂-WiSE-2% MeOH (right).

10

Zn foil in 10 m ZnCl₂-2% WiSE Zn foil in 10 m ZnCl₂-WiSE

Fig. S17: Scanning electron microscopy (SEM) images of Zn anode after cycling in 10 m ZnCl₂-WiSE (left), and 10 m ZnCl₂-WiSE-2% MeOH (right).

Section S11: Coordination number of different atoms

Table S1: Coordination number of different atoms at the inner solvation shell in 5 m ZnCl₂-WiSE-x % MeOH and 10 m ZnCl₂-WiSE-x % MeOH, respectively (cutoff distance is shown in parenthesis).

5 m ZnCl ₂ -x % MeOH	O _{Water} -O _{Water} (3.3 Å)	Zn-O _{Water} (3.6 Å)	О _{Water} -О _{МеОН} (3.3 Å)	О _{меОН} -О _{меОН} (3.3 Å)
0	4.1	4.6		
5	3.9	4.5	0.07	0.02
10	3.8	4.5	0.15	0.08
15	3.7	4.5	0.21	0.14
10 m ZnCl ₂ -x % MeOH	O _{Water} -O _{Water} (3.3 Å)	Zn-O _{Water} (3.7 Å)	O _{Water} -O _{MeOH} (3.3 Å)	О _{меОН} -О _{меОН} (3.3 Å)
0	3.4	3.8		
5	3.3	3.8	0.08	0.02
10	3.2	3.8	0.16	0.07
15	3.1	3.7	0.24	0.15
O _{water} , O _{MeOH} : oxygen atom of water and methanol molecules respectively.				

Section S12: Diffusion coefficients from MD simulation

5 m ZnCl ₂ -WiSE-x%	Diffusion Coefficients (× 10 ⁻⁵ cm ² s ⁻¹)			
MeOH	Zn ²⁺ ions	Cl ⁻ ions	Water	Methanol
x = 0	$\textbf{0.1912} \pm \textbf{0.018}$	0.3585 ± 0.009	$\textbf{1.0421} \pm \textbf{0.02}$	
x = 5	$\textbf{0.1503} \pm \textbf{0.009}$	$\textbf{0.2813} \pm \textbf{0.008}$	$\textbf{0.8626} \pm \textbf{0.02}$	$\textbf{0.6826} \pm \textbf{0.15}$
x = 10	$\textbf{0.1545} \pm \textbf{0.009}$	$\textbf{0.2621} \pm \textbf{0.060}$	$\textbf{0.8443} \pm \textbf{0.07}$	$\textbf{0.5137} \pm \textbf{0.06}$
x = 15	$\textbf{0.1497} \pm \textbf{0.008}$	0.2594 ± 0.019	$\textbf{0.9140} \pm \textbf{0.01}$	$\textbf{0.5953} \pm \textbf{0.09}$
10 M ZnCl ₂ -x%	Diffusion Coefficients (× 10 ⁻⁶ cm ² s ⁻¹)			
MeOH	Zn ²⁺ ions	Cl ⁻ ions	Water	Methanol
x = 0	$\textbf{0.0101} \pm \textbf{0.002}$	0.0156 ± 0.002	$\textbf{0.2960} \pm \textbf{0.050}$	
x = 5	$\textbf{0.0135} \pm \textbf{0.001}$	$\textbf{0.0206} \pm \textbf{0.005}$	$\textbf{0.3160} \pm \textbf{0.003}$	$\textbf{0.077} \pm \textbf{0.020}$
x = 10	$\textbf{0.0149} \pm \textbf{0.001}$	$\textbf{0.0311} \pm \textbf{0.001}$	$\textbf{0.3940} \pm \textbf{0.003}$	$\textbf{0.189} \pm \textbf{0.010}$
v = 1E	0.0306 ± 0.004	0.0447 ± 0.000	0.5410 ± 0.021	

Table S2: Diffusion coefficients from MD simulation for Zn^{2+} ions, Cl^{-} ions, water molecules, and methanol molecules for 5 m ZnCl₂-WiSE-x % MeOH and 10 m ZnCl₂-WiSE-x % MeOH.

Section S13: Efficiency of PBAR in half-cell and Zn//PBAR full-cell

Table S3: Discharge-specific capacity and coulombic efficiency of the PBAR tested in half-cell and full-cell configuration with different methanol vol.% in 10 m $ZnCl_2$ -WiSE.

	PBAR half-cell @ 1C-rate (1C = 66 mA h g^{-1})			
Methanol	Discharge specific	Coulombic efficiency (%)		
vol. %	capacity (mA h g ⁻¹)			
0	44	83		
10	66	91		
15	61	72		
	Zn//PBAR Full cell @ 1.3C-rate (1C = 88 mA h g^{-1})			
Methanol	Discharge specific	Coulombic efficiency (%)		
vol. %	capacity (mA h g ⁻¹)			
0	64	97		
2	67	79		
5	58	57		
10	76	52		