Supporting information for

2 Promoting effect of potassium on ammonia production

3 from electrochemical nitrate reduction over nano-

4 crystal nickel

- 5 Chunxia Zhang ^a, Zhengying Xue ^b, Yong Jiang ^c, Yunpu Zhai ^b, Changsen Zhang ^a,
- 6 Juexiu Li^d, and Panpan Liu^{a,*}
- 7 a School of Ecology & Environment, Zhengzhou University, Zhengzhou 450001,
- 8 Henan, P.R. China
- ^b College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P.R. China
- 11 ° College of Resources and Environment, Fujian Agriculture and Forestry University,
- 12 Fuzhou 350002, Fujian, P.R. China
- 13 ^d School of Smarts Energy & Environment, Zhongyuan University of Technology,
- 14 Zhengzhou 450007, Henan, P.R. China
- 15
- 16 *Corresponding author: Dr. Panpan Liu.
- 17 School of Ecology & Environment
- 18 Zhengzhou University, Zhengzhou 450001, P.R. China
- 19 Email: <u>liupanpan@zzu.edu.cn</u>
- 20 Tel: +86 371 67781163
- 21 Fax: +86 371 67781163

23 Fig. S1 (a) LSV curves of Ni/CF with and without NO₂⁻; (b) NH₃ yield rate and FE in

- 24 $0.1M \text{ NO}_2$ at various potentials over Ni/CF.
- 25

27 Fig. S2 SAED pattern of Ni/CF.

29 Fig. S3 XPS survey spectra of Ni/CF.

Fig. S4 LSV curves of Ni/CF with and without K^+ in electrolyte omitting the NO₃⁻.

Fig. S5 (a) The effects of K⁺ on the NRA performance on the CF (-0.79 V vs. RHE,
0.1M NO₃⁻); (b) The performance changed with the ratios of TBA concentration to NO₃⁻
-N concentration (0, 5, 10, 20, and 30) on the CF.

38 Fig. S6 The solution resistance (R_s) and charge transfer resistance (R_{ct}) of the Ni/CF 39 catalyst by EIS.

41 Fig. S7 CV curves of the Ni/CF in the electrolyte containing (a) 0%, (b) 25%, (c) 50%

42 (d) 75%, and (e) 100% K⁺.

44 Fig. S8 *In-situ* Raman spectroscopy of Ni/CF in (a) 50% K⁺, (b) 100% K⁺ in electrolyte
45 at various potentials (0.01 ~ -0.99 V vs. RHE).

47 Fig. S9 The proposed promoting mechanism of K^+ for NH₃ electrosynthesis on CF.