Review

Recent Advances in Rechargeable Aqueous Magnesium-ion Batteries

Xiaoman Ye,^a Xuemei Xiao,^a Zhijing Wu,^a Yi Zhan,^{a,*} Xin Wu,^{a,*} and Sheng Liu^{a,b,*}

^a School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
^b The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, China.

*Corresponding authors:

Dr./Assoc. Prof. Yi Zhan, E-mail: zhany9@mail.sysu.edu.cn;

Dr./Assoc. Prof. Xin Wu, E-mail: wuxin28@mail.sysu.edu.cn;

Dr./Assoc. Prof. Sheng Liu, E-mail: liusheng3@mail.sysu.edu.cn.

Cathode	Electrolyte	Current collector	Work Voltage (Mg/Mg ²⁺)	Discharge potential (Mg /Mg ²⁺)	Current density (mA g ⁻¹)	Discharge capacity (mAh g ⁻¹)	Cycle number (n)	Capacity retention (%)	Ref.
λ -MnO ₂	1 M MgCl ₂	carbon cloth	2.20~3.75	3.65	136	250.0	300	61.5	[1]
λ -MnO ₂ /MWCNTs	0.5 M MgSO ₄	carbon cloth	2.30~2.70	2.40	1000	124.1	1000	86.2	[2]
B-MnO ₂	0.5 M Mg(ClO ₄) ₂	stainless steel	2.37~2.97	2.80	2000	88.6	10000	62.5	[3]
δ-MnO ₂	1 M MgSO4	Ti	2.37~2.77	2.47	3000	75.0	1500	84.0	[4]
δ-MnO ₂ @CMS	0.5 M Mg(NO ₃) ₂	ccarbon cloths	2.40~2.75	2.65	50	224.1	300	60.5	[5]
δ-MnO ₂ @ MWCNTs/CC	0.5 M MgSO ₄	carbon cloths	2.40~2.80	2.65	1000	75.2	1150	80.0	[6]
α-MnO ₂	1 M MgSO ₄	nickel foam	2.40~2.90	2.70	500	87.5	N/A	N/A	[7]
α-MnO ₂ /CNT	1 M MgSO ₄	nickel foam	2.30~2.80	2.55	10000	67.0	1000	85.0	[7]
electro-conversion Mg- birnessite	0.5 M Mg(ClO ₄) ₂	carbon cloths	2.37~2.77	2.57	2000	130.0	3000	73.6	[8]

Table S1. Electrochemical performances of various cathodes for AMIBs.

			Work	Discharge	Current	Discharge	Cycle	Capacity	
Cathode	Electrolyte	Current	Voltage	potential (Mg	density	capacity	number	retention	Ref.
		collector	(Mg/Mg ²⁺)	/Mg ²⁺)	(mA g ⁻¹)	(mAh g ⁻¹)	(n)	(%)	
δ-MnO ₂ /MWCNTs	0.5 M MgSO ₄	carbon cloths	2.52~2.80	2.60	1000	45.1	500	>100	[9]
ε-MnO ₂	1 M MgCl ₂	carbon cloths	2.67~2.97	2.82	2000	100.0	400	94.3	[10]
Mn ₃ O ₄	1 M MgSO ₄	carbon cloths	2.80~3.00	2.90	200	95.8	2000	99.4	[11]
LiMn ₂ O ₄	1 M Mg(NO ₃₎₂	stainless steel	2.40~2.70	2.50	45400	42.0	20	83.3	[12]
$Li_{0.21}MnO_2 \cdot H_2O$	0.5 M Mg(NO ₃₎₂	carbon cloths	2.50~3.20	2.80	100	165.8	300	56.3	[13]
$Mg_{1/3}N_{i1/3}Mn_{2/3}O_2$	1 M Mg(NO ₃₎₂	carbon cloths	2.50~3.40	3.32	1000	100.0	200	50.6	[14]
Mg-OMS-1	0.2 M MgCl ₂	carbon cloths	2.30~2.65	2.50	100	~110	200	86.0	[15]
Mg-OMS-7	0.2 M Mg(NO ₃₎₂	carbon cloths	2.40~3.00	2.80	100	102.0	200	95.3	[16]
10% Nb K-OMS-2	0.5 M Mg(NO ₃) ₂	carbon cloths	2.00~2.90	2.80	100	175.0	200	38.6	[17]
10% V K-OMS-2	0.5 M Mg(NO ₃) ₂	carbon cloths	2.00~2.90	2.80	100	180.0	200	36.8	[17]
MgMn ₂ O ₄	0.5 M MgCl ₂	carbon paper	2.45~2.90	2.70	1000	82.8	1000	94.2	[18]
MgMn ₂ O ₄ /rGO	0.5 M MgCl ₂	carbon paper	2.40~2.80	2.70	1000	140.1	1000	85.3	[18]
buserite Mg-Mn oxide	0.5 M MgCl ₂	carbon cloths	2.30~3.10	2.65	1000	~164	100	~80.0	[19]

		C	Work	Discharge	Current	Discharge	Cycle	Capacity	
Cathode	Electrolyte	Current	Voltage	potential (Mg	density	capacity	number	retention	Ref.
		conector	(Mg/Mg ²⁺)	/Mg ²⁺)	(mA g ⁻¹)	(mAh g ⁻¹)	(n)	(%)	
T-MgMn ₂ O ₄	1 M MgSO ₄	carbon cloths	2.17~2.67	2.37	100	225.0	360	≈100	[20]
	1 M MgSO ₄ +			2.06			-	100	50.13
Mg_2MnO_4	$0.1 \text{ M} \text{ MnSO}_4$	stainless steel	2.75~3.37	2.90	800	71.7	50	>100	[21]
MgMn ₂ O ₄ -7.5/MWCNTs	0.5 M MgSO ₄	carbon cloths	2.10~2.80	2.30	1000	125.8	2000	81.8	[22]
Flower-like MgMn ₂ O ₄	0.5 M Mg(NO ₃) ₂	Ti	2.35~2.90	2.75	100	20.0	50	>100	[23]
EMgMn ₂ O ₄ /MWCNTs	0.5 M MgSO ₄	carbon cloths	2.30~2.75	2.65	1000	145.0	1000	73.3	[24]
MgFe _{1.33} Mn _{0.67} O ₄	0.5 M MgCl ₂	carbon cloths	2.50~3.60	2.80	1000	~50	1000	>100	[25]
NaMnTiO-5	0.5 M MgCl ₂	carbon cloths	2.40~3.00	2.70	1000	110.0	1000	>100	[26]
Ni _{0.3} -Mg-1	0.5 M Mg(NO ₃) ₂	carbon cloths	2.00~2.65	2.40	100	105.0	300	89.7	[27]
CuHCF	1 M Mg(CH ₃ COO) ₂	Ti	2.97~3.37	3.22	1000	81.0	200	51.9	[28]
CuFe-PBA	1 M Mg(NO ₃) ₂	carbon cloths	2.87~3.57	3.47	100	50.0	N/A	N/A	[29]
D-CuHCF@CNTF	1 M MgCl ₂	carbon nanotube	2.67~3.57	3.42	10000	90.0	1000	67.0	[30]

Cathode	Electrolyte	Current collector	Work Voltage (Mg/Mg ²⁺)	Discharge potential (Mg /Mg ²⁺)	Current density (mA g ⁻¹)	Discharge capacity (mAh g ⁻¹)	Cycle number (n)	Capacity retention (%)	Ref.
NiHCF	1 M MgSO ₄	stainless steel	2.87~3.17	2.97	10000	58	2000	86.2	[31]
Na _{1.4} Cu _{1.3} Fe(CN) ₆ · 5H ₂ O	1 M MgSO ₄	stainless steel	3.22~3.47	3.27	10000	60	1000	60	[31]
$Mg_{0.75}V_{10}O_{24}\cdot 4H_2O$	2 M Mg(CF ₃ SO ₃) ₂	carbon cloths	2.20~3.30	3.2	3000	90	100	67	[32]
V ₂ O ₅	PEG-5	carbon cloths	2.20~3.00	2.75	100	120	100	~100	[33]
$Li_3V_2(PO_4)_3$	4 M Mg(TFSI) ₂	Ti	2.72~3.52	3.42	1000	105	1000	~85	[34]

Anode	Electrolyte	Current collector	Work Voltage (Mg/Mg ²⁺)	Discharge potential (Mg /Mg ²⁺)	Current density (mA g ⁻¹)	Discharge capacity (mAh g ⁻¹)	Cycle number (n)	Capacity retention (%)	Ref.
FeVO ₄ ·0.9H ₂ O	1 M MgSO ₄	carbon cloths	1.70~2.40	2.10	100	98.5	50	75.1	[35]
FeVO ₄ ·0.9H ₂ O/rGO	1 M MgSO ₄	carbon cloths	1.80~2.40	2.15	100	118.2	50	82.5	[35]
FeVO ₄	1 M MgSO ₄	carbon cloths	1.50~2.20	1.99	100	150.4	50	29.9	[36]
FeVO ₄ /C	1 M MgSO ₄	carbon cloths	1.50~2.20	2.01	100	185.1	50	63.2	[37]
Polyimide	1 M MgSO ₄	stainless steel	2.37~2.67	2.07	1000	146.0	2000	90.0	[31]
PPMDA/MCNTs	4 M Mg(TFSI) ₂	Ti	1.70~2.00	1.80	100	110.0	500	87.0	[34]
3D-P(PDI-T)	1 M MgCl ₂	carbon cloths	1.60~2.50	1.90	5000	120.0	5000	93.2	[38]
PTCDI	0.5 M Mg(NO ₃₎₂	Ti	1.40~2.00	1.90	500	75.0	10000	87.2	[23]
PTCDA	1 M MgCl ₂	carbon cloths	2.00~2.13	2.05	1000	100.0	800	85.0	[10]
VO ₂	1 M MgSO ₄	carbon cloths	1.85~2.10	2.10	500	130.3	100	54.3	[5]
VO _x	4.5 M MgCl ₂	graphite foil	1.90~2.90	2.83	1300	200.0	100	98.4	[39]

 Table S2. Electrochemical performances of various anodes for AMIBs.

Anode	Electrolyte	Current collector	Work Voltage (Mg/Mg ²⁺)	Discharge potential (Mg /Mg ²⁺)	Current density (mA g ⁻¹)	Discharge capacity (mAh g ⁻¹)	Cycle number (n)	Capacity retention (%)	Ref.
Mn-NaVO	MAU117	carbon cloths	2.10~2.30	2.10	500	105.3	60	>100	[40]
$VO_2(B)$	1 M Mg(CH ₃ COO) ₂	carbon cloths	1.60~2.30	2.15	1000	257.0	3000	81.5	[28]
		fluorine-							
V ₂ O ₅	0.075 M MgCl_2	doped tin	1.42~1.72	1.52	5900	427.0	2000	82.0	[41]
		oxide							
TiO ₂	PEG-5	carbon cloths	0.70~1.30	0.88	500	157.0	200	70.0	[33]
MoTe ₂	1 M MgCl ₂	carbon cloths	1.90~2.30	2.40	1000	175.0	250	14.2	[42]

Cathode	Anode	Electrolyte	Work voltage	Discharge plateau	Current density	discharge capacity	Cycle number	Capacity retention	Ref.
			(V)	(V)	(mA g ⁻¹)	(mAh g ⁻¹)	(n)	(%)	
Mg-OMS-1	FeVO ₄ 0.9H ₂ O/rGO	1 M MgSO ₄	0.00~1.80	0.70	100	54.3	100	97.2	[35]
Mg-OMS-1	FeVO ₄ /C	1 M MgSO ₄	0.00~1.80	0.30	100	58.9	100	97.7	[36]
NiHCF	Polyimide	1 M MgSO ₄	0.00~1.55	0.75	500	35.0	5000	60.0	[31]
Na _{1.4} Cu _{1.3} Fe(CN) ₆ · 5H ₂ O	Polyimide	1 M MgSO ₄	0.00~1.55	1.10	500	36.5	5000	60.0	[31]
$Li_3V_2(PO_4)_3$	PPMDA@MWCNT S	4 M Mg(TFSI) ₂	0.40~1.80	1.00	2000	42.0	6000	92.0	[34]
Mg-OMS-2/rGO	AC	0.5 M Mg(NO ₃) ₂	0.00~2.00	0.70	100	46.0	500	95.8	[43]
Mn ₃ O ₄	AC	2 M MgSO ₄	0.00~2.00	0.70	500	50.0	6000	>100	[44]
EMgMn ₂ O ₄ /MWCNTs	AC	0.5 M MgSO ₄	0.00~2.00	0.60	1000	43.5	500	>100	[24]
δ-MnO ₂ @CMS	VO ₂	1 M MgSO ₄	0.00~1.80	1.30	500	~100	100	46.9	[5]
Ni _{0.3} -Mg-1	VO_2	1M MgSO ₄	0.00~1.80	0.20	500	65.0	100	94.6	[27]

Table S3. Electrochemical performances of various full cells for AMIBs.

Mg ₂ MnO ₄	Polyimide	1 M MgSO ₄ + 0.1 M MnSO ₄	0.10~1.60	0.86	18000	79.4	10000	89	[21]
			Work	Discharge	Current	discharge	Cycle	Capacity	
Cathode	Anode	Electrolyte	voltage	plateau	density	capacity	number	retention	Ref.
			(V)	(V)	(mA g ⁻¹)	(mAh g ⁻¹)	(n)	(%)	
Li _{0.21} MnO ₂ ·H ₂ O	VO ₂	0.5 M MgSO ₄	0.00~2.00	0.60	100	57.4	50	80.5	[13]
δ-MnO ₂ /MWCNTs	VO ₂	0.5 M MgSO ₄	0.00~2.20	0.75	1000	16.2	500	>100	[9]
Electro-conversion	D 1 ' ' 1		0.00.2.00	0.75	500	12.0	500	00.0	[0]
Mg-birnessite	Polyimide	$0.5 \text{ M Mg}(\text{CIO}_{4)2}$	0.00~2.00	0.75	500	42.0	500	99.0	[8]
δ-MnO ₂ @MWCNTs/CC	AC	0.5 M MgSO4	0.00~1.60	0.80	1000	40.0	1000	>100	[6]
ε-MnO ₂	PTCDA	1 M MgCl ₂	0.00~1.60	1.00	1000	100.0	800	72.6	[10]
ММО	PTCDI	1 M MgCl ₂	0.00~1.80	1.10	200	~100.0	400	>100	[45]
MnO ₂	VO _x	4.5 M MgCl ₂	0.01~2.10	1.00	2600	33.0	1000	84.5	[39]
Flower-like MgMn ₂ O ₄	PTCDI	0.5 M Mg(NO ₃) ₂	0.20~1.50	0.75	1000	124.8	5000	80.9	[23]
MgMn ₂ O ₄ -7.5/MWCNTs	VO ₂	0.5 M MgSO ₄	0.00~1.90	0.70	1000	18.4	500	~100	[22]
Cathode	Anode	Electrolyte	Work	Discharge	Current	discharge	Cycle	Capacity	Ref.

			voltage	plateau	density	capacity	number	retention	
			(V)	(V)	(mA g ⁻¹)	(mAh g ⁻¹)	(n)	(%)	
CuHCF	Mg	MgCl ₂ ·6H ₂ O WIS	1.20~2.40	2.30	500	35.0	700	65.0	[46]
CuHCF	Mg	MgCl ₂ -PEO QSSEs	1.60~2.60	2.20	250	120.0	800	88.0	[47]
MnO ₂	Mg	SIW2	1.40~2.80	2.5	5000	500	1200	~99	[48]
CuHCF	V ₂ O ₅ (B)	1 M Mg(CH ₃ COO) ₂	0.10~1.70	1.10	5000	210.7	500	67.3	[28]
CuHCF	Mn-NaVO	MAU117	0.01~1.40	0.90	1000	40.0	800	>100	[40]
Buserite Mg-Mn oxide	AC	0.5 M MgCl_2	0.00~1.80	1.20	1000	70.0	1000	100	[19]
$Mg_{0.75}V_{10}O_{24}{\cdot}4H_2O$	PTCDA	Mg(CF ₃ SO ₃) ₂ -PEO	0.00~1.70	0.70	4000	60.0	5000	62.0	[32]
Mg_2MnO_4	3D-P(PDI-T)	1.0 M MgCl ₂	0.00~1.80	1.50	500	148.0	5000	100	[38]
Mg _x CuHCF	PTCDI	1 M Mg(TFSI) ₂	0.00~2.20	1.50	1000	97	2000	56.3	[49]
$\delta\text{-}MnO_2/rGO$	PTCDI	2 M MgSO ₄ +2 M Mg(CH ₃ COO) ₂	0.00~2.00	1.14	2000	16.5	3000	76.4	[50]
δ -MnO ₂	VO ₂	4 M MgCl ₂	0.00~1.70	1.50	2000	42.0	1000	100	[51]
NaMnTiO-5	AC	0.5 M MgCl ₂	0.00~1.80	1.50	1000	125.0	1000	90.4	[26]
V ₂ O ₅	Mg _x TiO ₂ (B)	PEG-5	0.10~2.45	1.70	100	57.0	200	>100	[33]

References

1. Yuan, C.; Zhang, Y.; Pan, Y.; Liu, X.; Wang, G.; Cao, D., Investigation of the intercalation of polyvalent cations (Mg²⁺, Zn²⁺) into λ -MnO₂ for rechargeable aqueous battery. *Electrochim. Acta* **2014**, *116*, 404-412.

2. Zhang, D.; Li, D.; Zhang, J.; Sun, T., High-performance and low-cost manganese oxide/multiwalled carbon nanotubes composite as cathode material for aqueous magnesium ion battery. *J. Electroanal. Chem.* **2021**, *901*, 115764.

3. Nam, K. W.; Kim, S.; Lee, S.; Salama, M.; Shterenberg, I.; Gofer, Y.; Kim, J.-S.; Yang, E.; Park, C. S.; Kim, J.-S.; Lee, S.-S.; Chang, W.-S.; Doo, S.-G.; Jo, Y. N.; Jung, Y.; Aurbach, D.; Choi, J. W., The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. *Nano Lett.* **2015**, *15* (6), 4071-4079.

4. Wu, C.; Zhao, G.; Bao, X.; Chen, X.; Sun, K., Hierarchically porous delta–manganese dioxide films prepared by an electrochemically assistant method for Mg ion battery cathodes with high rate performance. *J. Alloy Compd.* **2019**, *770*, 914-919.

5. Zhang, H.; Cao, D.; Bai, X., High rate performance of aqueous magnesium-ion batteries based on the δ -MnO₂@carbon molecular sieves composite as the cathode and nanowire VO₂ as the anode. *J. Power Sources* **2019**, *444*, 227299.

Zhang, D.; Ma, Y.; Zhang, J.; Sun, T., Binder-free and flexible delta-MnO₂@multiwalled carbon nanotubes as high-performance cathode material for aqueous magnesium ion battery. *Nanotechnology* 2021, *32* (44), 445401.

7. Jia, Z.; Hao, J.; Liu, L.; Wang, Y.; Qi, T., Vertically aligned α -MnO₂ nanosheets on carbon nanotubes as cathodic materials for aqueous rechargeable magnesium ion battery. *Ionics* **2018**, *24* (11), 3483-3491.

8. Shi, Z.; Xue, L.; Wu, J.; Guo, Q.; Xia, Q.; Ni, M.; Wang, P.; Savilov, S. V.; Aldoshin, S. M.; Zan, F.; Xia, H., Hierarchical Mg-birnessite nanowall arrays with enriched (010) planes for high performance aqueous Mg-ion batteries. *J. Electrochem. Soc.* **2021**, *168* (12), 120549.

9. Zhang, D.; Huang, W.; Chen, T.; Wang, Q.; Sun, T., Facile synthesis of MnO₂/MWCNTs via UV photolysis as high-performance and low-cost cathodes for aqueous magnesium ion batteries. *ACS Appl. Energy Mater.* **2021**, *4* (7), 6853-6865.

 Liu, Z.; Zhou, W.; He, J.; Chen, H.; Zhang, R.; Wang, Q.; Wang, Y.; Yan, Y.; Chen, Y., Binder-free MnO₂ as a high rate capability cathode for aqueous magnesium ion battery. *J. Alloy Compd.* 2021, *869*, 159279.

11. Pan, Z.; Qin, T.; Zhang, W.; Chu, X.; Dong, T.; Yue, N.; Wang, Z.; Zheng, W., Non-layer-transformed Mn_3O_4 cathode unlocks optimal aqueous magnesium-ion storage via synergizing amorphous ion channels and grain refinement. *J. Energy Chem.* **2022**, *68*, 42-48.

12. Sinha, N. N.; Munichandraiah, N., Electrochemical conversion of LiMn₂O₄ to MgMn₂O₄ in aqueous electrolytes. *Electrochem. Solid-State Lett.* **2008**, *11* (11), F23.

13. Bai, X.; Cao, D.; Jiang, Z.; Zhang, H., Exploration of hydrated lithium manganese oxide with a nanoribbon structure as cathodes in aqueous lithium ion and magnesium ion batteries. *Inorg Chem Front* **2022**, *9* (3), 485-493.

14. Zhang, Y.; Cheng, K.; Ye, K.; Gao, Y.; Zhao, W.; Wang, G.; Cao, D., Preparation of $M_{1/3}Ni_{1/3}Mn_{2/3}O_2$ (M=Mg or Zn) and its performance as the cathode material of aqueous divalent cations battery. *Electrochim. Acta* **2015**, *182*, 971-978.

15. Zhang, H.; Ye, K.; Shao, S.; Wang, X.; Cheng, K.; Xiao, X.; Wang, G.; Cao, D., Octahedral

magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery. *Electrochim. Acta.* **2017**, *229*, 371-379.

16. Zhang, H.; Ye, K.; Cang, R.; Zhu, K.; Yan, J.; Cheng, K.; Wang, G.; Cao, D., The synthesis of 1×1 magnesium octahedral molecular sieve with controllable size and shape for aqueous magnesium ion battery cathode material. *J. Electroanal. Chem.* **2017**, *807*, 37-44.

17. Li, Z.; Chen, Y.; Gong, Z.; Liu, Y.; Wang, G.; Gao, Y.; Zhu, K.; Cao, D., Boosting magnesium Ion storage behavior via heteroelement doping in a porous tunnel framework cathode for aqueous Mg-Ion batteries. *Chem.-Asian J.* **2023**, *18* (12), e202300208.

18. Liu, G.; Chi, Q.; Zhang, Y.; Chen, Q.; Zhang, C.; Zhu, K.; Cao, D., Superior high rate capability of MgMn₂O₄/rGO nanocomposites as cathode materials for aqueous rechargeable magnesium ion batteries. *Chem. Commun.* **2018**, *54* (68), 9474-9477.

19. Sun, C.; Wang, H.; Yang, F.; Tang, A.; Huang, G.; Li, L.; Wang, Z.; Qu, B.; Xu, C.; Tan, S.; Zhou, X.; Wang, J.; Pan, F., Layered buserite Mg-Mn oxide cathode for aqueous rechargeable Mg-ion battery. *J. Magnes. Alloy.* **2023**, *11* (3), 840-850.

20. Tao, S.; Huang, W.; Liu, Y.; Chen, S.; Qian, B.; Song, L., Three-dimensional hollow spheres of the tetragonal-spinel $MgMn_2O_4$ cathode for high-performance magnesium ion batteries. *J. Mater. Chem. A* **2018**, *6* (18), 8210-8214.

21. Sun, T.; Du, H.; Zheng, S.; Tao, Z., Inverse-spinel Mg_2MnO_4 material as cathode for high-performance aqueous magnesium-ion battery. *J. Power Sources* **2021**, *515*, 230643.

Zhang, D.; Du, D.; Zhang, J.; Feng, Z.; Sun, T., Porous spinel magnesium manganese oxide/multiwalled carbon nanotubes composite synthesized by electrochemical conversion as high-performance cathode for aqueous magnesium ion battery. *J. Electrochem. Soc.* 2022, *169* (4), 040530.
 Wen, B.; Yang, C.; Wu, J.; Liu, J.; Wang, W.; Yang, J.; Chi, X.; Liu, Y., Water-induced 3D MgMn₂O₄ assisted by unique nanofluidic effect for energy-dense and durable aqueous magnesium-ion batteries. *Chem. Eng. J.* 2022, *435*, 134997.

24. Zhang, D.; Chen, Q.; Zhang, J.; Sun, T., MgMn₂O₄/multiwalled carbon nanotubes composite fabricated by electrochemical conversion as a high-performance cathode material for aqueous rechargeable magnesium ion battery. *J. Alloy Compd.* **2021**, *873*, 159872.

25. Zhang, Y.; Liu, G.; Zhang, C.; Chi, Q.; Zhang, T.; Feng, Y.; Zhu, K.; Zhang, Y.; Chen, Q.; Cao, D., Low-cost MgFe_xMn_{2-x}O₄ cathode materials for high-performance aqueous rechargeable magnesium-ion batteries. *Chem. Eng. J.* **2020**, *392*, 123652.

26. Zhang, Y.; Ding, T.; Wang, J.; Yao, A.; Zhang, C.; Zhang, T.; Zhang, Y.; Feng, Y.; Chi, Q., Improvements in the electrochemical performance of sodium manganese oxides by Ti doping for Aqueous Mg-ion batteries. *Chem.-Asian J.* **2023**, *18* (20), e202300542.

27. Zhang, H.; Cao, D.; Bai, X., Ni-Doped magnesium manganese oxide as a cathode and its application in aqueous magnesium-ion batteries with high rate performance. *Inorg. Chem. Front.* **2020**, *7* (11), 2168-2177.

28. Huang, M.; Wang, X.; Wang, J.; Meng, J.; Liu, X.; He, Q.; Geng, L.; An, Q.; Yang, J.; Mai, L., Proton/Mg²⁺ co-Insertion chemistry in aqueous Mg-oon batteries: from the interface to the inner. *Angew. Chem.-Int. Edit.* **2023**, *62* (37), e202308961.

29. Mizuno, Y.; Okubo, M.; Hosono, E.; Kudo, T.; Oh-ishi, K.; Okazawa, A.; Kojima, N.; Kurono, R.; Nishimura, S.-i.; Yamada, A., Electrochemical Mg²⁺ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes. *J. Mater. Chem. A* **2013**, *1* (42), 13055-13059.

30. Ling, Y.; He, B.; Han, L.; Gong, W.; Chang, C.; Zhang, Q., Two-electron redox chemistry

enables potassium-free copper hexacyanoferrate as high-capacity cathode for aqueous Mg-ion battery. *InfoMat* **2024**, *n/a* (n/a), e12549.

Chen, L.; Bao, J. L.; Dong, X.; Truhlar, D. G.; Wang, Y.; Wang, C.; Xia, Y., Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode. *ACS Energy Lett.* **2017**, *2* (5), 1115-1121.
 Ma, X.-F.; Zhao, B.-Q.; Liu, H.; Tan, J.; Li, H.-Y.; Zhang, X.; Diao, J.; Yue, J.; Huang, G.; Wang, J.; Pan, F., H₂O-Mg²⁺ waltz-Like shuttle enables high-capacity and ultralong-Life magnesium-ion batteries. *Adv. Sci.* **2024**, *n/a* (n/a), 2401005.

33. Sun, C.; Huang, G.; Xu, C.; Li, L.; Tang, A.; Zhou, X.; Wang, J.; Pan, F., Improved compatibility of aqueous electrolyte with TiO₂(B) toward high-voltage aqueous rechargeable Mg-ion batteries. *Energy Storage Mater.* **2024**, *66*, 103197.

34. Wang, F.; Fan, X.; Gao, T.; Sun, W.; Ma, Z.; Yang, C.; Han, F.; Xu, K.; Wang, C., High-voltage aqueous magnesium ion batteries. *ACS Central Sci.* **2017**, *3* (10), 1121-1128.

35. Zhang, H.; Ye, K.; Zhu, K.; Cang, R.; Yan, J.; Cheng, K.; Wang, G.; Cao, D., The FeVO₄·0.9H₂O/graphene composite as anode in aqueous magnesium ion battery. *Electrochim. Acta* **2017**, *256*, 357-364.

36. Zhang, H.; Ye, K.; Zhu, K.; Cang, R.; Yan, J.; Cheng, K.; Wang, G.; Cao, D., High-energydensity aqueous magnesium-ion battery based on a carbon-coated FeVO₄ anode and a Mg-OMS-1 cathode. *Chem. Eur. J.* **2017**, *23* (67), 17118-17126.

37. Zhang, S.; Wang, Y.; Sun, Y.; Wang, Y.; Yang, Y.; Zhang, P.; Lv, X.; Wang, J.; Zhu, H.; NuLi, Y., High-energy aqueous magnesium ion batteries with capacity-compensation evolved from dynamic copper ion redox. *Small* **2023**, *19* (21), 2300148.

38. Cang, R.; Zhang, M.; Zhou, X.; Zhu, K.; Zhang, X.; Cao, D., A high-rate and long-life aqueous rechargeable Mg-ion battery based on an organic anode integrating diimide and triazine. *ChemSusChem* **2023**, *16* (10), e202202347.

39. Tian, Y.; Liu, N.; Otitoju, T. A.; Wang, Y.; Feng, Z.; Sun, T., H⁺/Mg²⁺ dual ions insertion mechanism in vanadium oxide nanosheet anode for aqueous magnesium-ion batteries. *J. Energy Storage* **2023**, *72*, 108357.

40. Song, X.; Ge, Y.; Xu, H.; Bao, S.; Wang, L.; Xue, X.; Yu, Q.; Xing, Y.; Wu, Z.; Xie, K.; Zhu, T.; Zhang, P.; Liu, Y.; Wang, Z.; Tie, Z.; Ma, J.; Jin, Z., Ternary eutectic electrolyte-assisted formation and dynamic breathing effect of the solid-electrolyte interphase for high-stability aqueous magnesium-ion full batteries. *J. Am. Chem. Soc.* **2024**, *146* (10), 7018-7028.

41. Drosos, C.; Jia, C.; Mathew, S.; Palgrave, R. G.; Moss, B.; Kafizas, A.; Vernardou, D., Aerosolassisted chemical vapor deposition of V_2O_5 cathodes with high rate capabilities for magnesium-ion batteries. *J. Power Sources* **2018**, *384*, 355-359.

42. Nandi, S.; Yan, Y.; Yuan, X.; Wang, C.; He, X.; Li, Y.; Das, S. K., Investigation of reversible metal ion (Li⁺, Na⁺, Mg²⁺, Al³⁺) insertion in MoTe₂ for rechargeable aqueous batteries. *Phys. Chem. Chem. Phys.* **2023**, *25* (20), 13833-13837.

43. Zhang, H.; Ye, K.; Zhu, K.; Cang, R.; Wang, X.; Wang, G.; Cao, D., Assembly of aqueous rechargeable magnesium ions battery capacitor: the nanowire Mg-OMS-2/graphene as cathode and activated carbon as anode. *ACS Sustain. Chem. Eng.* **2017**, *5* (8), 6727-6735.

44. Cao, X.; Wang, L.; Chen, J.; Zheng, J., Low-cost aqueous magnesium-ion battery capacitor with commercial Mn_3O_4 and activated carbon. *ChemElectroChem* **2018**, *5* (19), 2789-2794.

45. Zhao, Y.; Wang, B.; Shi, M.; An, S.; Zhao, L.; Yan, C., Mg-intercalation engineering of MnO₂ electrode for high-performance aqueous magnesium-ion batteries. *Int. J. Min. Met. Mater.* **2022**, *29*

(11), 1954-1962.

46. Leong, K. W.; Pan, W.; Wang, Y.; Luo, S.; Zhao, X.; Leung, D. Y. C., Reversibility of a high-voltage, Cl⁻-regulated, aqueous Mg metal battery enabled by a water-in-salt electrolyte. *ACS Energy Lett.* **2022**, *7* (8), 2657-2666.

47. Leong, K. W.; Pan, W.; Yi, X.; Luo, S.; Zhao, X.; Zhang, Y.; Wang, Y.; Mao, J.; Chen, Y.; Xuan, J.; Wang, H.; Leung, D. Y. C., Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage. *Sci. Adv. 9* (32), eadh1181.

48. Xu, Y.; Liu, Z.; Zheng, X.; Li, K.; Wang, M.; Yu, W.; Hu, H.; Chen, W., Solid electrolyte interface regulated by solvent-in-water electrolyte enables high-voltage and stable aqueous Mg-MnO₂ batteries. *Adv. Energy Mater.* **2022**, *12* (22), 2103352.

49. Zhou, R.; Fan, K.; Hou, Z.; Liu, Q.; Huang, H.; Zhang, B., Synergistic proton and Mg²⁺/Ca²⁺ insertion boosting aqueous divalent ion batteries. *Energy Storage Mater.* **2023**, *63*, 103012.

50. Tsai, Y.-R.; Chen, T.-Y.; Yang, Z.-Q.; Tsai, C.-C.; Huang, Y.-T.; Anuratha, K. S.; Lin, T.-W.; Sofer, Z.; Lin, J.-Y., Studying δ -MnO₂/reduced graphene oxide composite cathode in a low-temperature and high-voltage-tolerant hybrid electrolyte for aqueous Mg-ion batteries. *2D Mater.* **2023**, *10* (2), 024001.

51. Yang, G.; Xu, X.; Qu, G.; Deng, J.; Zhu, Y.; Fang, C.; Fontaine, O.; Hiralal, P.; Zheng, J.; Zhou, H., An aqueous magnesium-ion battery working at -50 °C enabled by modulating electrolyte structure. *Chem. Eng. J.* **2023**, *455*, 140806.