Supporting information

Metal-free Bi-functional Cooperative catalysis: Amine and quaternary amine-functionalized dendritic fibrous nanosilica as heterogeneous catalysts for Henry reaction and CO₂ conversion[†]

Sanjay Yadav,^{*ac¥} Hanuman G. Kachgunde,^{bc¥} Nishu Choudhary,^{ac} Gopal H. Wanole,^{bc} Krishnan Ravi,^{*bc} Ankush V. Biradar,^{*bc} and Alok Ranjan Paital^{*ac}

^aSalt and Marine Chemicals Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar-364002, Gujarat, India. E-mail: <u>arpaital@csmcri.res.in;sychem00700@gmail.com</u> ^bInorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, Gujarat, India.

E-mail: ankush@csmcri.res.in; krishkicha545@gmail.com

^cAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

[¥]Contributed equally

Contents

Sr.	Content	Page
No		No.
1	Materials & Methods	S3
2	Controlled Experiments	S4
3	Studies on the variation of catalysts for the nitroaldol condensation	S5
	between benzaldehyde and nitromethane	
3	The EDX analysis spectrum and mapping of the synthesized DFNS	S6
1	The FDX analysis spectrum and the XPS analysis of the synthesized	\$7
	DFNS@NH ₂ & the final Material DFNS@TBAB (Fig. S2-S3)	57
5	The UV-Vis, Raman profiles, the Basicity profile, and the effect of time	S8-9
	(Fig. S4-S6)	
6	Recyclability studies, the FeSEM & TEM images of the recycled catalyst	S9-10
	(Fig. S7-8)	
7	Fig. S9 GC-MS profile for (2-nitrovinyl)benzene	
8	Fig. S10 GC-MS profile for 4-(2-nitrovinyl)phenol	
9	Fig. S11 GC-MS profile for 4-(1,3-dinitropropan-2-yl)phenol	
10	Eig S12 CC MS mofile for 2 mothery 4 (2 mitroviny) mhonel	
10	Fig. S12 GC MS profile for 4 (1.2 dinitronrongn 2 yl) 2 mothovynhanol	
	The sist oc-inspirite for 4-(1,5-dimuopropan-2-yi)-2-memoxyphenor	
12	Fig. S14 GC-MS profile for 2-(2-nitrovinyl)benzene-1,3,5-triol	
13	Fig. S15 GC-MS profile for 2-(2-nitrovinyl)benzene-1,3,5-triol	S10-
14	Fig. S16 GC-MS profile for 2-(2-nitrovinyl)phenol	14
15	Fig. S17 GC-MS profile for 1-nitro-2-(2-nitrovinyl)benzene	
16	Fig. S18 GC-MS profile for 2-(2-nitrovinyl)furan	
17	Fig. S19 GC-MS profile for 2-methyl-5-(2-nitrovinyl)furan	
18	Fig. S20 GC-MS profile for (2-nitroprop-1-en-1-yl)benzene	
19	Fig. S21 GC-MS profile for 4-(2-nitroprop-1-en-1-yl)phenol	
20	Fig. S22 GC-MS profile for 2-methoxy-4-(2-nitroprop-1-en-1-yl)phenol	
21	Fig. S23 GC-MS profile for 1-nitro-2-(2-nitropron-1-en-1-vl)benzene	
21	Fig. S24 GC-MS profile for 2-(2-nitroprop-1-en-1-vl)furan	
23	Fig. S25 GC-MS profile for 2-methyl-5-(2-nitroprop-1-en-1-yl)furan	
24	Fig. S26 GC-MS profile for 4-phenyl-1,3-dioxolan-2-one	
25	¹ H NMR & ¹³ C NMR spectrum of 2-methyl-5-(2-nitrovinyl)furan	S15
26	¹ H NMR & ¹³ C spectrum of 4-(2-nitrovinyl)phenol	S16
27	¹³ C NMR spectrum of 2-methoxy-4-(2-nitrovinyl)phenol	S17
28	CO ₂ optimization studies (Table S2) & Comparison table for the metal-free	S17-
	Hanny reaction between henzeldebyde and nitromethane (Table S2)	19
29	Comparison table for the metal-free catalysts for the synthesis of styrene	S19-
	carbonate from styrene oxide and CO ₂ (Table S4) & Supporting references	20
1		1

1. Materials & Methods

Tetrphenylphosphonium bromide (TPPB), Urea, p-Xylene, Propanol, TEOS, Benzaldehyde (99%) 2,4,6-trihydroxy benzaldehyde (98%), Vanillin (>98%), Furfural (>98%), Styrene oxide (97%) 5-Methylfurfural (>98%) and 3-APTES were obtained from Merck (Sigma-Aldrich) & TCI India Pvt. Ltd.; p-hydroxybenzaldehyde (95%), ammonium nitrate, and Nitromethane (98%) were obtained from SRL Pvt. Ltd.; 2-Nitrobenzaldehyde (99%), Salicylaldehyde (98%), Nitroethane (98%), Dry toluene, and Dry acetonitrile were obtained from Spectrochem Pvt. Ltd. All chemicals and dry solvents were used without further purification.

2. Instrumentation

For structural characterization, FTIR spectra were measured with a Perkin-Elmer GX spectrophotometer (manufactured in the USA) using KBr pellets. Surface area measurements were conducted with the Micromeritics 3 FLEX instrument, activating the sample at 65 °C for 50 minutes before analysis. Scanning electron microscopy (SEM-Leo series 1420 VP) equipped with INCA, and transmission electron microscopy (TEM) using a JEOL JEM 2100 microscope with Lacey carbon-coated grids, were employed to determine surface morphology. X-ray photoelectron spectroscopy (XPS) was conducted for chemical and surface state analysis using a Thermo Fisher Nexsa spectrophotometer with monochromated Al Kα radiation (energy of 1486.6 eV). Powder X-ray diffraction profiles were recorded using a MiniFlex-II (FD 41521) powder diffractometer from Rigaku, Japan, with a scan rate of 1° per minute. Thermal stability investigation involved TGA analysis using a Mettler-Toledo (TGA/SDTA 851E) instrument in the presence of air, with a heating rate of 10 °C/min. Thermal stability was investigated using TGA analysis on a Mettler-Toledo (TGA/SDTA 851E) instrument in an air

atmosphere, with a heating rate of 10 °C/min. 1H and 13C NMR spectra were recorded on a Bruker Advance 500 MHz NMR. Thermal stability was investigated using TGA analysis on a Mettler-Toledo (TGA/SDTA 851E) instrument in an air atmosphere, with a heating rate of 10 °C/min. The conversion and selectivity were analysed using a gas chromatography system equipped with an FID detector (GC-7890B-Agilent) with HP-5 column, consisting of 5% diphenyl and 95 % dimethyl polysiloxane capillary stationary phase and nitrogen as the carrier gas. The product was confirmed by GC-MS (equipped with FID as a detector (GC-MS Shimadzu, QP-2010, Japan) with HP-5 column which consists of 5 % diphenyl and 95 % dimethyl polysiloxane capillary stationary phase and NMR analysis.

3. Controlled Experiments

IPA (-OH) and APTMS (-NH₂) were taken as model compounds for the amine and hydroxyl functionality of DFNS@NH₂ (**Scheme S1**). The presence of Si-OH and –NH₂ from DFNS@NH₂ was confirmed by FT-IR.

(Scheme S1): Reaction Conditions: Benzaldehyde: 2 mmol, Nitromethane: 11.2 mmol, Temperature; 50 °C, 6 h, Catalyst; 5 mg, A-IPA (5 mg), B-IPA+APTES (5+5 mg), and C-IPA (5 mg).

Entry	Catalyst	Conv. (%)	Selectivity (%)	
			В	С
1	blank	-	-	-
2	Si(OH) ₄	-	-	-
3	SiO ₂	-	-	-
4	SiO ₂ @NH ₂	3	100	-
5	Ba(OH) ₂	-	-	-
6	DFNS@NH2	>87	>99	-
7	MgO	51	>99	-
8	MgO-NH ₂	>99	89	11

Table S1. Studies on the variation of catalysts for the nitroaldol condensation between

 benzaldehyde and nitromethane

^a**Reaction condition:** Benzaldehyde: 2 mmol (0.2 ml), Nitromethane: 9 mmol (0.6 ml), Temperature; 50 °C, 6 h

Fig. S1 The EDX analysis spectrum and mapping of the synthesized DFNS material.

Fig. S2 (A) The EDX analysis spectrum of the synthesized DFNS@NH₂ & the final Material DFNS@TBAB (B).

Fig. S3 (A, B) The comparison of the XPS spectrum of the synthesized DFNS@NH₂ & the final material DFNS@TBAB.

Fig. S4 (A) The comparison of the Raman spectra of the synthesized DFNS and aminated DFNS@NH₂ materials; (B) The UV-Vis profile of the DFNS, DFNS@NH₂ & DFNS@TBAB materials

Fig. S5 The CO₂-TPD of DFNS@NH₂ and DFNS@TBAB.

Fig. S6 Effect of time, Reaction condition: Benzaldehyde; 2 mmol, Nitromethane; 11.2 mmol, Catalyst; 20 mg, Temperature; 50 °C.

Fig. S7 Recyclability studies of DFNS@NH₂^aReaction condition: Benzaldehyde: 2 mmol, Nitroethane: 11.2 mmol, Catalyst 20 mg, Temperature; 50°C, Time: 6 h.

Fig. S8 (A, B) The FeSEM and TEM images of the recycled catalyst after 5 cycles having retained dendritic morphology.

4. GC-MS profile of the selected products

Fig. S10 GC-MS profile for 4-(2-nitrovinyl)phenol.

Fig. S11 GC-MS profile for 4-(1,3-dinitropropan-2-yl)phenol.

Fig. S12 GC-MS profile for 2-methoxy-4-(2-nitrovinyl)phenol.

Fig. S13 GC-MS profile for 4-(1,3-dinitropropan-2-yl)-2-methoxyphenol.

Fig. S14 GC-MS profile for 2-(2-nitrovinyl)benzene-1,3,5-triol.

Fig. S15 GC-MS profile for 2-(2-nitrovinyl)benzene-1,3,5-triol.

Fig. S16 GC-MS profile for 2-(2-nitrovinyl)phenol.

Fig. S17 GC-MS profile for 1-nitro-2-(2-nitrovinyl)benzene.

Fig. S18 GC-MS profile for 2-(2-nitrovinyl)furan.

Fig. S19 GC-MS profile for 2-methyl-5-(2-nitrovinyl)furan.

Fig. S20 GC-MS profile for (2-nitroprop-1-en-1-yl)benzene.

Fig. S21 GC-MS profile for 4-(2-nitroprop-1-en-1-yl)phenol.

Fig. S22 GC-MS profile for 2-methoxy-4-(2-nitroprop-1-en-1-yl)phenol.

Fig. S23 GC-MS profile for 1-nitro-2-(2-nitroprop-1-en-1-yl)benzene.

Fig. S24 GC-MS profile for 2-(2-nitroprop-1-en-1-yl)furan.

Fig. S25 GC-MS profile for 2-methyl-5-(2-nitroprop-1-en-1-yl)furan.

Fig. S26 GC-MS profile for 4-phenyl-1,3-dioxolan-2-one

5. ¹H and ¹³C NMR analysis

¹H and ¹³C NMR analysis

Fig. S30 ¹³C NMR spectrum of 4-(2-nitrovinyl)phenol

Table S2. Optimization studies cycloaddition of styrene oxide with CO₂ using DFNS@TBAB

Entry	Catalyst	Catalyst	Temp	Time	Conv. (%)	Sel.
		amount	(°C)	(h)		(%)
1	-	-	100	12	-	-
2	DFNS@NH ₂	25	100	12	-	-
3 ^a	DFNS@NH ₂ + CTAB	25	100	12	96	90
4 ^b	$DFNS@NH_2 + KI$	25	100	12	90	88
5°	$DFNS@NH_2 + n-BB$	25	100	12	46	94
6 ^d	n-BB	25	100	12	16	90
7	DFNS@TBAB	25	100	12	34	90
8	DFNS@TBAB	12.5	100	12	14	93
9	DFNS@TBAB	50	100	12	58	98
10	DFNS@TBAB	50	100	12	72	98
11	DFNS@TBAB	100	100	12	100	98

12	DFNS@TBAB	25	60	12	-	-
13	DFNS@TBAB	25	80	12	10	98
14	DFNS@TBAB	25	100	12	36	98
15	DFNS@TBAB	25	120	12	88	98
16	DFNS@TBAB	25	120	3	10	98
17	DFNS@TBAB	25	120	6	34	98
18	DFNS@TBAB	25	120	9	66	98
19	DFNS@TBAB	25	120	12	88	98
20	DFNS@TBAB	25	120	15	94	98

Reaction conditions: Styrene oxide: 2.08 mmol and balloon CO₂ pressure, ^(a)CTAB (5 mg), ^(a)KI (5 mg), ^(c)n-BB (5 mg), and ^(d)25 mg. n-BB: n-butyl bromide

Table S3. Comparison of metal-free catalyst for Henry reaction between benzaldehyde and nitromethane

Sr.	Catalyst	Reaction condition	Yield	Reference
No.			(%)	
1	μ-	Catalyst: 2 mol%, BA: 1	10	S1
	Chlorotris(tetrahydrofuran)[tris[1,1,1-	equivalent, NM: 1 equivalent,		
	trimethyl-N-	THF, 66 °C, 24 h		
	(trimethylsilyl)silanaminat			
2	Ammonium acetate	Catalyst: 0.3 mmol, BA: 1	95	S2
		mmol, NM: 3 mL,		
		microwave, 90 °C, 1 h		
3	Amine functionalized Yolk-shell-	Catalyst: 5 mol%, BA: 1.0	99	S3
	structured mesoporous silica	mmol, NM: 1.0 mL, 90 °C, 3		
		h		
4	SiO ₂ and triethylamine	Catalyst: 200 mg,	18	S4
		Triethylamine: 0.2 mmol,		
		BA: 2.0 mmol, NM: 2 mL,		
		50 °C, 17 h		
5	AFB	Catalyst: 26.5 mg, BA: 2.5	92	S5
		mmol, NM: 2 mL, 90 °C, 6 h		

6	AP-GO	Catalyst containing 0.075	90	S6
		mmol nitrogen species, BA:		
		0.306 mL (3.0 mmol), NM:		
		6.0 mL, 100 °C, 6.0 h		
7	DFNS@NH ₂	Catalyst: 20 mg, BA: 2	>99	This
		mmol, NM: 11.2 mmol, , 60		work
		°C, 6 h,		

BA: Benzaldehyde, NM: Nitromethane, AP-GO: Graphene oxide-supported primary amine, AFB: Amine functionalized bagasse

styrene oxide and CO ₂						
Catalyst	Со-	Reaction conditions	Conv. (%)	Sel. (%)	Ref.	
	catalyst					
SB	KI	2 MPA CO ₂ , 120 °C, 6 h	87	99	S7	
COP-222	-	0.1 MPA CO ₂ , 100 °C, 24 h	99	99	S8	
Amb-OH-	-	3.0 MPa of CO ₂ , 120 °C, 24	-	99	S9	
I-910		h				
PQPBrCO	-	0.1 MPA CO ₂ , 120 °C, 12 h	-	98.2	S10	
ОН						
CSGOArg	THAB	100 °C, 8 h	-	65.39 ^a	S11	
aerogels						
[CMPy]Br/	-	CO ₂ balloon pressure, 90 °C, 1	100	100	S12	
MA (1:1)		h				
[TMGVBr	-	0.1 MPA CO ₂ , acetonitrile	-	41.7 ^a	S13	
]10@COF		(2 mL), 100 °C, 10 h				
Ketimine	TBAI	1 MPA CO ₂ , RT, 24 h	-	94 a	S14	
derivatives						
QAFB	-	0.1 MPA CO ₂ , 120 °C, 12 h	61	99	S5	
DFNS@T	-	CO ₂ (balloon pressure),	94	98	This	

Table S4. Comparison of metal-free catalysts for the synthesis of styrene carbonate from styrene oxide and CO₂

Abbreviations: SO: Styrene oxide, C₃N₄: Graphitic carbon nitride, u-g-C₃N₄: Urea derived graphitic carbon nitride, p-TBIB: metal-free microporous polymeric spheres catalyst, P-g-C₃N₄: Phosphorus doped graphitic carbon nitride, Amb-OH-I-910: Ion-exchange step into their iodide counterparts, OX-BC: Oxidised biochar, SB: sugarcane bagasse, QAFB: Quaternary ammonium salt functionalized sugarcane bagasse, tetrabutylammonium bromide (TBAB), [CMPy]Br: 1-(carboxymethyl)pyridinium bromide, KI: Potassium iodide.^aYield

References

- Y. Y. Liu, S. W. Wang, L. J. Zhang, Y. J. Wu, Q. H. Li, G. S. Yang, M. H. Xie, *Chin. J. Chem.*, 2008, 26, 2267-2272.
- 2. J. M. Rodríguez, M. D. Pujol, Tetrahedron Lett., 2011, 52, 2629-2632.
- 3. J. An, T. Cheng, X. Xiong, L. Wu, B. Han, G. Liu, Catal. Sci. Technol., 2016, 6, 5714-5720.
- 4. K. Tanemura, T. Suzuki, Tetrahedron Lett., 2018, 59, 392-396.
- K. Ravi, S. Mehra, S. Tothadi, A. Kumar, A. V. Biradar, J. Environ. Chem. Eng., 2023, 11, 109737.
- 6. F. Zhang, H. Jiang, X. Wu, Z. Mao, H. Li, ACS Appl. Mater. Interfaces., 2015, 7, 1669-1677.
- W. Chen, L. X. Zhong, X. W. Peng, R. C. Sun, F. C. Lu, ACS Sustain. Chem. Eng., 2015, 3, 147-152.
- S. Subramanian, J. Oppenheim, D. Kim, T. S. Nguyen, W. M. Silo, B. Kim, C. T. Yavuz, *Chem*, 2019, *5*, 3232-3242.
- Y. A. Alassmy, Z. Asgar Pour, P. P. Pescarmona, ACS Sustain. Chem. Eng., 2020, 8, 7993-8003.
- 10. Y. L. Wan, Z. Zhang, C. Ding, L. Wen, J. CO₂ Util., 2021, 52, 101673.
- 11. Y. L. Wan, Z. Zhang, C. Ding, Wen, L. J. CO₂ Util., 2022, 59, 101958.
- 12. F. Norouzi, A. Abdolmaleki, J. Environ. Chem. Eng., 2024, 12, 111984.
- Q. Xue, P. Wang, L. Cheng, Y. Wei, Y. Wang, J. Lin, G. Guan, Q. Xue, Sep. Purif. Technol., 2025, 352, 128175.
- 14. S. Roy, K. Das, S. Halder, Catal. Lett., 2024, 154, 2243-2254.