Supplementary data

Unveiling the long-term degradation mechanisms of the sealing structures for durable PEM fuel cells by ex-situ accelerated stability evaluation of a membrane electrode assembly

Jin-Wook Kim[†], Sooyoung Yang[†], Gyu Jin Shin, Min Jeong Oh, Keumjung Lee, and Jun Hyup Lee*

Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea

[†]These authors contributed equally to this work.

*Corresponding author. Email: junhyuplee@ssu.ac.kr

Fig. S1. (a) Photographic image of 180° T-peel test. (b) FT-IR Spectra of the upper and lower surfaces of the peeled MEA frame films according to the different acceleration environments.

Fig. S2. (a) Young's modulus and (b) tensile strength of the Nafion membrane films after accelerated evaluation for 504 h under two-factor, three-level conditions.

Fig. S3. (a) AFM images of membrane surfaces and (b) cross-sectional FE-SEM images of the MEA frame films after accelerated evaluation for 504 h under two-factor, three-level conditions.

	FE-SEM Image	Fluorine	Carbon	Oxygen
Т25рН7	31.20 μm 14.00 μm 38.50 μm ^{20 μm}	14.00 μm Τ	C	0
Т25рН5	30.50 μm 14.30 μm 33.10 μm 20 μm	14.30 μm <u>35</u> F	C C	0
Т25рН3	30.40 μm 14.80 μm 36.40 μm _{20 μm}	14.80 µm	c C	0 0
Т60рН7	32.66 μm 14.65 μm 38.40 μm ^{20 μm}	14.63 µm <u>Т</u>	c	<u>о</u>
Т60рН5	36.80 μm 15.03 μm Τ 32.33 μm	15.03 µm 7		0 0
Т60рН3	37.90 μm 15.40 μμς 2 μ 32.90 μm ²⁰ μm	15.40 µm Е	r	n an ann an an ann an Anna <mark>O</mark>
Т95рН7	38.36 μm 16.80 μm Ξ 32.50 μm ²⁰ μm	16.80 µm Г	c	0
Т95рН5	38.56 µm 17.10 µm ± 32.63 µm ²⁰ µm	17.10 µm Полото Полого и F	C	0
Т95рН3	34.10 μm 17.56 μm <u>T</u> 37.86 μm ^{20 μm}	17.56 µm F	C	0

Fig. S4. Cross-sectional FE-SEM and EDS images of the MEA frame films after accelerated evaluation for 504 h under two-factor, three-level conditions.

	Peel Strength (N/mm)					
Sample	Initial	1 h	3 h	6 h	12 h	18 h
	(0 h)	24 h	72 h	168 h	336 h	504 h
T25pH7	0.22	0.22 (±0.012)	0.23 (±0.009)	0.22 (±0.007)	0.25 (±0.011)	0.23 (±0.007)
	(±0.010)	0.22 (±0.010)	0.20 (±0.030)	0.21 (±0.01)	0.19 (±0.01)	0.18 (±0.004)
T25pH5	0.21 (±0.010)	0.22 (±0.013)	0.22 (±0.004)	0.20 (±0.012)	0.21 (±0.006)	0.21 (±0.011)
		0.20 (±0.010)	0.20 (±0.020)	0.19 (±0.010)	0.17 (±0.005)	0.19 (±0.010)
Т25рН3	0.20	0.26 (±0.005)	0.19 (±0.006)	0.18 (±0.011)	0.19 (±0.020)	0.19 (±0.005)
	(± 0.007)	0.20 (±0.009)	0.18 (±0.007)	0.18 (±0.010)	0.17 (±0.005)	0.16 (±0.009)
Т60рН7	0.21	0.26 (±0.009)	0.20 (±0.019)	0.22 (±0.013)	0.20 (±0.006)	0.19 (±0.005)
	(± 0.010)	0.20 (±0.010)	0.17 (±0.010)	0.14 (±0.010)	0.13 (±0.020)	0.12 (±0.020)
Т60рН5	0.24	0.24 (±0.018)	0.21 (±0.001)	0.17 (±0.016)	0.18 (±0.007)	0.17 (±0.006)
	(±0.002)	0.14 (±0.009)	0.13 (±0.006)	0.13 (±0.014)	0.12 (±0.005)	0.12 (±0.003)
Т60рН3	0.26	0.19 (±0.007)	0.18 (±0.008)	0.18 (±0.009)	0.18 (±0.010)	0.17 (±0.010)
	(±0.016)	0.13 (±0.006)	0.13 (±0.003)	0.12 (±0.010)	0.12 (±0.014)	0.12 (±0.002)
Т95рН7	0.27	0.20 (±0.026)	0.21 (±0.023)	0.19 (±0.011)	0.16 (±0.013)	0.14 (±0.014)
	(±0.030)	0.11 (±0.010)	0.09 (±0.022)	0.11 (±0.021)	0.07 (±0.007)	0.09 (± 0.01)
Т95рН5	0.24	0.17 (±0.036)	0.16 (±0.011)	0.16 (±0.024)	0.13 (±0.019)	0.12 (±0.043)
	(±0.005)	0.10 (±0.001)	0.08 (±0.001)	0.09 (±0.005)	0.06 (±0.003)	0.05 (±0.010)
Т95рН3	0.27	0.19 (±0.020)	0.15 (±0.015)	0.14 (±0.039)	0.13 (±0.020)	0.12 (±0.022)
	(±0.040)	0.11 (±0.006)	0.08 (±0.005)	0.11 (±0.011)	0.05 (±0.010)	0.05 (±0.002)
T95Dry	0.25	-	-	-	-	-
	(±0.012)	0.30 (±0.012)	0.33 (±0.020)	0.32 (±0.014)	0.34 (±0.035)	$0.35(\pm 0.011)$

Table S1. Peel strengths of the MEA frame films after two-factor, three-level experiment

Sample	Initial weight	After	Water uptake	After	Water uptake
	(g)	30 min (g)	30 min (%)	60 min (g)	60 min (%)
T25pH7	0.1722	0.1760	+ 2.40 (± 0.17)	0.1802	+ 4.42 (± 0.21)
	0.1677	0.1721		0.1752	
	0.1695	0.1735		0.1765	
T25pH5	0.1723	0.1776	+ 3.31 (± 0.26)	0.1802	+ 4.43 (± 0.18)
	0.1725	0.1780		0.1797	
	0.1717	0.1780		0.1795	
Т25рН3	0.1749	0.1820	+4.25	0.1810	+ 4.88 (± 1.00)
	0.1678	0.1750		0.1775	
	0.1770	0.1848	(±0.14)	0.1865	
T60pH7	0.1698	0.1770	+ 4.87 (± 0.48)	0.1808	+ 6.46 (± 0.89)
	0.1699	0.1791		0.1827	
	0.1697	0.1781		0.1788	
T60pH5	0.1655	0.1791	+ 6.50 (± 1.40)	0.1794	+ 7.34 (± 0.75)
	0.1651	0.1730		0.1765	
	0.1754	0.1868		0.1872	
T60pH3	0.1719	0.1843	+ 6.96 (± 0.96)	0.1873	+ 7.20 (± 1.46)
	0.1750	0.1890		0.1877	
	0.1708	0.1805		0.1800	
T95pH7	0.1726	0.1828	+ 5.58 (± 0.33)	0.1891	+ 9.15 (± 0.32)
	0.1737	0.1826		0.1895	
	0.1731	0.1830		0.1883	
Т95рН5	0.1681	0.1824	+ 8.05 (± 0.52)	0.1854	+ 9.62 (± 0.84)
	0.1678	0.1801		0.1848	
	0.1672	0.1811		0.1813	
Т95рН3	0.1695	0.1861	+ 8.11 (± 1.37)	0.1835	+ 9.60 (± 1.33)
	0.1664	0.1799		0.1854	
	0.1711	0.1821		0.1867	

Table S2. Water uptakes of the MEA frame films under two-factor, three-level conditions

Table S3. Young's modulus and tensile strength of the membrane films after two-factor,
three-level experiment

	504 h		
Sample	Young's Modulus	Tensile Strength	
	(MPa)	(MPa)	
Initial membrane	512.27 (±16.25)	49.13 (±0.83)	
T25pH7	302.86 (± 33.23)	48.74 (±1.25)	
T25pH5	219.71 (±14.02)	47.28 (±1.51)	
T25pH3	169.91 (±16.27)	47.08 (±1.83)	
T60pH7	152.26 (±15.99)	46.87 (±1.93)	
T60pH5	145.28 (±15.34)	46.70 (± 3.43)	
T60pH3	139.45 (±15.22)	46.37 (±0.82)	
Т95рН7	127.12 (±14.02)	44.27 (±1.70)	
Т95рН5	103.12 (± 20.19)	40.50 (±0.30)	
Т95рН3	75.77 (±29.04)	40.53 (± 2.14)	