Supporting Information

Mussel-inspired Sticky Self-healing Conductive Hydrogels Composites for Physiological Electrical Sensing

Ming-Lin He¹, Nai-Feng Chen², Pei Xiang Wang¹, Hsin-Ya Chen¹, Wan-Yi Lai¹, Pei-Tun Liao¹, Jiashing Yu³, Yang Wei¹, Ren-Jei Chung¹, Chun-Hsien Hsu,⁴ Shiu-Jau Chen^{5*}, Ting-Ting Chang^{2*}, Wen-Ya Lee ^{1,2*}

Table S1. The summary of adhesion strength, self-healing efficiency, and conductivity of mussel-inspired hydrogels

System	Adhesion strength (kPa)	Healing efficiency	Conductivity (mS/cm)	Reference
PAM/HAC/Borax	49.6	40%	0.18	[S1]
			110 (Li ⁺)	
TA@CNC/PVA/Borax	60	92%	N/A	[S2]
PVA-PAA/PEI	11	87%	N/A	[S3]
		0,77	1 1.1	[20]
PVA-SbQ/CNC	25	N/A	N/A	[S4]
PDA/CNT/PAA/PAM	60	N/A	82	[05]
PDA/CN I/PAA/PAM	60	IN/A	82	[S5]
PAA/DA/PPy/Fe3+	~50	N/A	3.9	[S6]
L-DMA–PCL	38.4	N/A	55	[S7]
PVA/PDAP/Borax	121	91.2%	38	This work

[[]S1] Macromol. Rapid Commun. 2020, 41,1900450.

[[]S2] ACS Appl. Mater. Interfaces, 2019, 11.6: 5885-5895.

[[]S3] Polymer, 2020, 206: 122845.

[[]S4] Macromol. Mater.Eng., 2020, 305.1: 1900623.

[[]S5] Adv. Funct. Mater. 2018, 28, 1704195

[[]S6] J. Mater. Chem. B, 2021,9, 2221-2232

[[]S7] J. Colloid Interface Sci., 2021, 585, 420

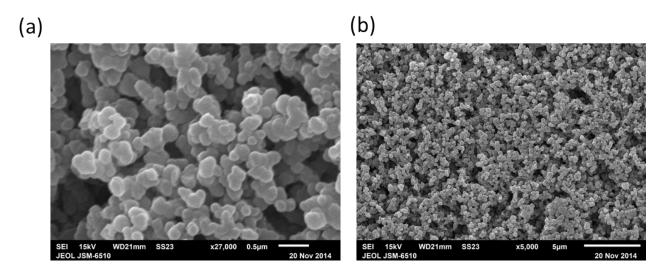


Figure S1. SEM images of (a,b) PDAP at different magnifications.

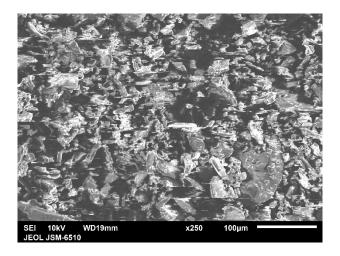


Figure S2. SEM image of the unpolymerized dopamine hydrochloride.

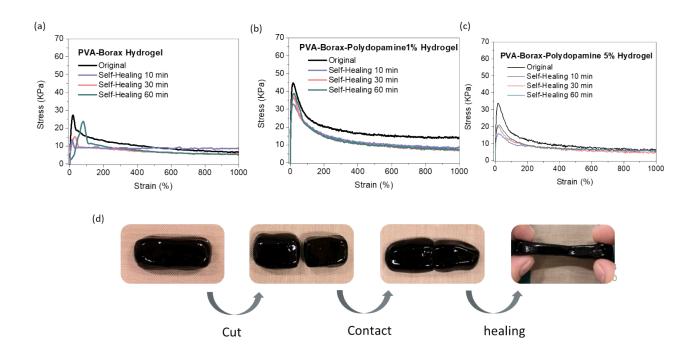


Figure S3. (a-c) Stress-strain curves of the hydrogel adhesives with various amount of PDAPs. (d). Demonstration of self-healing properties in a PVA/Borax/PDAP hydrogel.

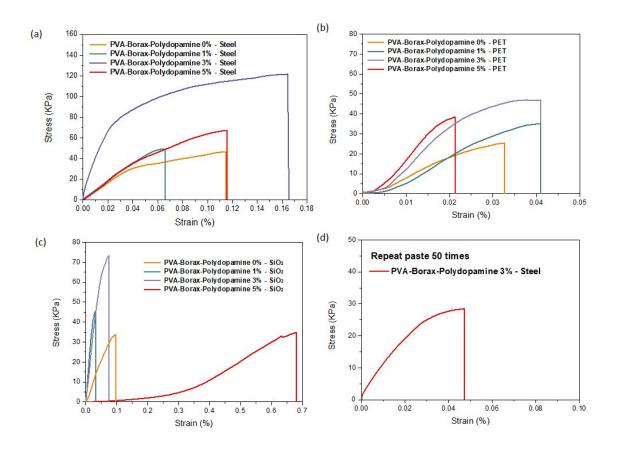


Figure S4. Tensile stress-strain curves for (a-c) the adhesion strength of the hydrogel with different concentrations of PDAPs to different substrates and (d) 3wt % hydrogel after 50 times repeatedly paste/peel cycles.

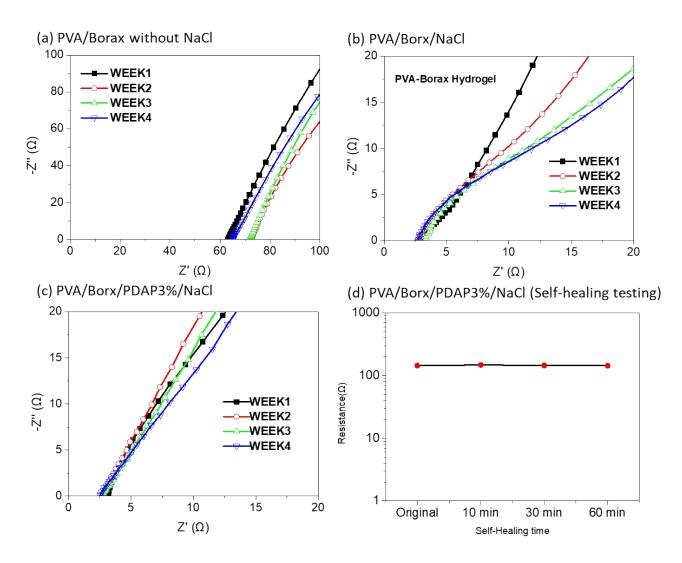


Figure S5. (a-c) Nyquist plots of the conductive hydrogel adhesive along with time; (d) Resistance recovery of the conductive hydrogel adhesives after cutting.

```
sketch_mar24a
void setup() {
  // initialize the serial communication:
  Serial.begin(9600);
  pinMode(10, INPUT); // Setup for leads off detection LO +
  pinMode(11, INPUT); // Setup for leads off detection LO -
}
void loop() {
  if((digitalRead(10) == 1)||(digitalRead(11) == 1)){
    //Serial.println('!');
  else{
    // send the value of analog input 0:
     Serial.println(analogRead(A0));
  //Wait for a bit to keep serial data from saturating
  delay(1);
}
```

Figure S6. Codes of the Arduino UNO microcontroller with AD8232 module.