Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

## **Supporting Information**

## **Composite Oxide Cooling Pigments Mitigate the Impact of Urban Heat Islands**

G.P. Darshan<sup>1, 2\*</sup>, Akshay Arjun<sup>2</sup>, H.B. Premkumar<sup>2</sup>, Elisa Moretti<sup>3</sup>, Alberto Vomiero<sup>3, 4\*</sup>

 <sup>1</sup>Physics and Astronomy Department, University of Padova, Via Marzolo 8, Padova I-35131, Italy
<sup>2</sup>Department of Physics, Faculty of Natural Sciences, M S Ramaiah University of Applied Sciences, Ramaiah Technical Campus, Bengaluru 560058, India
<sup>3</sup>Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia, 30172, Italy
<sup>4</sup>Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, 97187, Sweden

**Corresponding Authors:** Dr. Darshan G.P. (Email Id.: darshubavimane@gmail.com) and Prof. Alberto Vomiero (Email Id.: alberto.vomiero@ltu.se).



Fig.S1. EDX spectrum of the selected portions of the synthesized LWCuO, LWCO, LWZO, and LWFO nano pigments [Inset: The tables enclosed corresponding elemental compositions in both weight and atomic (in %)].



Fig.S2. XPS survey spectrum of the LWFO cooling nano pigment.



Fig.S3. FTIR spectra of the synthesized cooling nano pigments.



Fig.S4. Schematic illustration demonstrating band structures of LWO and LWFO pigments.



Fig.S5. Photographic images of the house models with different commercially available roofing materials to study passive daytime radiative cooling applications.



Fig.S6. Comparison of WCA of various pigment coatings with prepared LWFO pigment.

| SI.<br>No. | Pigments                                                           | Synthesis<br>method           | NIR<br>Reflectance<br>(%) | External stimuli<br>tests (Chemical/<br>Thermal/Photo) | References             |
|------------|--------------------------------------------------------------------|-------------------------------|---------------------------|--------------------------------------------------------|------------------------|
| 01.        | TiO <sub>2</sub> @NiTiO <sub>3</sub>                               | Precipitation-<br>calcination | 83.38                     | No                                                     | Zou et al. [22]        |
| 02.        | Y <sub>3</sub> Fe <sub>4</sub> AlO <sub>12</sub>                   | Solution combustion           | 87.66                     | Yes                                                    | Zhou et al.<br>[23]    |
| 03.        | $BaSn_{1-x}Fe_{x}O_{3-\delta}$                                     | Sol-gel                       | 79.81                     | Yes                                                    | Wang et al.<br>[24]    |
| 04.        | TbFeO <sub>3</sub>                                                 | Coprecipitation               | 48                        | Yes                                                    | Maria et al.<br>[25]   |
| 05.        | YFeO <sub>3</sub>                                                  | Solid-state reaction          | 45.8                      | No                                                     | Li et al. [26]         |
| 06.        | La <sub>1-x</sub> Ce <sub>x</sub> AlO <sub>3</sub>                 | Sol-gel                       | 82.22                     | Yes                                                    | Cheng et al.<br>[27]   |
| 07.        | $LiCe(MoO_{4+\delta})_2$                                           | Solid-state reaction          | 95.28                     | Yes                                                    | Xiao et al. [28]       |
| 08.        | BaTi <sub>5</sub> O <sub>11</sub> : 5 % Ni                         | Solid-state reaction          | 76.19                     | Yes                                                    | Jian et al. [29]       |
| 09.        | Fe <sub>2</sub> Mn <sub>6</sub> : CuCr <sub>2</sub> O <sub>4</sub> | Coprecipitation               | 24.7                      | No                                                     | Mingmin et al.<br>[30] |
| 10.        | $YIn_{0.9x}Mn_{0.1}MxO$<br>$_{3-\delta}$ (M = Li/Zn, x<br>= 0-0.4) | Solid-state reaction          | 97.76                     | Yes                                                    | Zhang et al.<br>[31]   |

Table S1: List of previously reported NIR reflective pigments synthesized via various routes and corresponding NIR reflectance values.

| Pigments | Average<br>crystallite size<br>(nm) | Energy gap<br>(eV) |
|----------|-------------------------------------|--------------------|
| LWO      | 25                                  | $3.74 \pm 0.0030$  |
| LWCuO    | 30                                  | $3.13\pm0.0048$    |
| LWCO     | 27                                  | $2.83\pm0.0088$    |
| LWZO     | 23                                  | $3.78\pm0.0036$    |
| LWFO     | 28                                  | $3.06\pm0.0048$    |
|          |                                     |                    |

Table S2: Estimated average crystallite size, and energy gap of the prepared cooling nano pigments.

| Diama anta | Treatment        | CIE L*a*b* |       |       |       |
|------------|------------------|------------|-------|-------|-------|
| Pigments   |                  | L*         | a*    | b*    | ΔE^   |
|            | Bare             | 91.84      | -3.6  | 6.9   |       |
| LWO        | IR               |            |       |       | 1.14  |
|            | Irradiated       | 92.08      | -3.48 | 7.02  |       |
|            | Bare             | 80.87      | -3.29 | 24.39 |       |
| LWCuO      | IR               |            |       |       | 3.85  |
|            | Irradiated       | 82.23      | -3.59 | 23.32 |       |
|            | Bare             | 62.01      | -0.69 | -2.57 |       |
| LWCO       | IR               |            |       |       | 2.21  |
|            | Irradiated       | 61.59      | -0.72 | -3.02 |       |
|            | Bare             | 94.42      | -2.57 | 7.39  |       |
| LWZO       | IR               |            |       |       | 3.28  |
|            | Irradiated       | 95.23      | -2.2  | 6.58  |       |
|            | Bare             | 62.77      | 19.34 | 19.79 |       |
| LWFO       | IR<br>Irradiated | 63.88      | 20.63 | 20.32 | 0.399 |

Table S3: The CIE chroma coordinates (L\*a\*b\*) and color difference ( $\Delta E^*$ ) values of the prepared pigments after IR light irradiation for 48 h.

| Coatings               | NIR<br>Reflectance<br>(%) | Area (m²) | Electricity<br>(kW-h/m <sup>2</sup> ) | Cost<br>(\$/month) |
|------------------------|---------------------------|-----------|---------------------------------------|--------------------|
| Construction<br>Cement | 30.12                     | 268.42    | 49.99                                 | 249.95             |
| Pearlescent<br>pigment | 80.35                     | 268.42    | 35.22                                 | 176                |
| LWFO                   | 97.82                     | 268.42    | 32.45                                 | 162.25             |

Table S4: The NIR reflectance and simulated results of prepared LWFO pigment and conventional pigments.