Supplementary Information

Fine-tuning ultramicroporosity in PIM-1 membranes by aldehyde functionalization for efficient hydrogen separation

Tae Hoon Lee, Taigyu Joo, Philippe Jean-Baptiste, Pablo A. Dean, Jing Ying Yeo, and Zachary P. Smith*

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

Corresponding author: zpsmith@mit.edu (Z. P. Smith)

Fig. S1. Schematic illustration of reduction of nitrile with DIBAL and subsequent imine hydrolysis with acid.¹

Samula		Atomic ratio (at.%)			
Sample	С	Ν	0		
PIM-1 (Theory)	82.9	5.7	11.4		
PIM-1 (XPS)	81.0	5.1	13.9		
PIM-CHO (Theory)	82.9	-	17.1		
PIM-CHO (XPS)	79.6	0.3	20.1		

Table S1. Predicted and XPS-based elemental concentrations of PIM-1 and PIM-CHO.

Fig. S2. High-resolution (a–b) C 1s, (c–d) O 1s, and (e–f) N 1s XPS spectra of (a,c,e) PIM-1 and (b,d,f) PIM-CHO.² Peak fitting for N 1s XPS spectrum of PIM-CHO was not performed due to the negligible presence of nitrogen.

Fig. S3. TGA curves of PIM-CHO films prepared with (Dry) or without toluene pretreatment (Toluene).

Fig. S4. Stress-strain curves of PIM-1 and PIM-CHO films.

Sample	Young's modulus (MPa)	Tensile strength (MPa)	Elongation at break (%)
PIM-1	246	21.2	12.8
PIM-CHO	317	12.9	3.0

Table S2. Mechanical properties of PIM-1 and PIM-CHO films calculated from the stress-strain curves in Fig. S4.

Fig. S5. CO₂ adsorption–desorption isotherms of PIM-1 and PIM-CHO up to 1 bar at 298 K.

Fig. S6. Isosteric heat of adsorption for PIM-1 and PIM-CHO obtained from CO_2 sorption isotherms at 273 and 298 K (Fig. 2b and Fig. S5, respectively).

Polymer film	PIM-1ª	PIM-Tol- HClª	PIM- CHOª	PIM- COOH ³	PIM- AO ⁵	PIM-TZ ⁴	PIM- NH ₂ ⁷	PIM- deBOC (thermal) ⁶	PIM- Thio ⁸
Gas				Gas p	ermeability (b	arrer)			
H_2	4190	4060	2550	270	910	-	1450	2000	610
O_2	1710	1680	300	44	150	-	430	500	140
CO ₂	10300	10900	1510	290	1150	3000	-	2300	1120
N_2	590	560	55	9.0	33	100	134	120	37
CH_4	1020	960	49	9.0	34	136	210	170	56
Gas pair	Ideal selectivity (-)								
H_2/N_2	7.1	7.3	42.8	30.0	27.6	-	10.8	16.7	16.5
H_2/CH_4	4.1	4.2	52.4	30.0	26.8	-	6.9	11.8	10.9
O_2/N_2	2.9	3.0	5.5	4.9	4.5	-	3.2	4.2	3.8
CO ₂ /CH ₄	10.1	11.4	31.0	32.2	33.9	22.1	-	13.5	20.0

Table S3. Gas separation performance of functionalized PIM-1 membrane films reported in the literature and reported in this study. The corresponding chemical structures of membranes

are shown in Fig. S5.

^a This study.

Fig. S7. Chemical structures of functionalized PIM-1 membranes reported in literature and reported in this study. $^{3-8}$

Sample	Gas	k_D (cm ³ _{STP} cm ⁻³ _{pol} atm ⁻¹)	C'_H (cm ³ _{STP} cm ⁻³ _{pol})	b (atm ⁻¹)	S_{latm} (cm ³ _{STP} cm ⁻³ _{pol} atm ⁻¹)
PIM-1	CH_4	1.43	42.5	0.16	7.3
	CO ₂	4.05	65.8	0.59	28.5
PIM-CHO	CH ₄	1.17	28.9	0.14	4.7
	CO ₂	3.72	40.1	0.67	19.8

Table S4. Dual-mode sorption model parameters calculated from CH_4 and CO_2 sorption isotherms at 35 °C (Fig. 4a).

Sample	Gas	D $(10^{-7} \times cm^2 s^{-1})$	${ m S}_{1atm} \ (cm^3{}_{ m STP} cm^{-3}{}_{ m pol} atm^{-1})$	P (barrer)	D _{CO2} /D _{CH4}	${ m S_{CO2}}/{ m S_{CH4}}$	P _{CO2} /P _{CH4}
PIM-1	CH_4	10.6	7.3	1020	- 2.6	3.9	10.1
	CO ₂	27.4	28.5	10300			
PIM-CHO	CH ₄	0.8	4.7	49	- 7.3	4.2	31.0
	CO ₂	5.8	19.8	1510			

Table S5. Diffusion, sorption, and permeability coefficients and the corresponding selectivities of PIM-1 and PIM-CHO membrane films measured at 35 °C and 1 bar.

Polymer film	PIM-1 (0 day)	PIM-1 (53 days)	PIM-CHO (0 day)	PIM-CHO (56 days)		
Gas	Gas permeability (barrer)					
H ₂	4190	3860	2550	1980		
CO ₂	10300	7680	1510	960		
O ₂	1710	1390	300	210		
N_2	590	400	55	39		
CH_4	1020	580	49	34		
Gas pair	Ideal selectivity (-)					
H ₂ /N ₂	7.1	9.6	42.8	50.9		
H_2/CH_4	4.1	6.7	52.4	58.2		
O_2/N_2	2.9	3.5	5.5	5.5		
CO ₂ /CH ₄	10.1	13.3	31.0	28.1		

Table S6. Gas separation performance of PIM-1 and PIM-CHO membrane films before and after aging.

Fig. S8. Relative permeability (P_{aged}/P_{as}) as the ratio of the gas permeabilities of aged membrane films to those of as-prepared ones depending on effective gas diameters. PIM-1 and PIM-CHO membrane films were aged for 53 and 56 days, respectively. Effective diameters were used as reported by Robeson *et al.*.⁹

References

- 1 A. E. G. Miller, J. W. Biss, and L. H. Schwartzman, J. Org. Chem., 1959, 24, 627–630.
- 2 Y. Liu, E. K. McGuinness, B. C. Jean, Y. Li, Y. Ren, B. G. D. Rio, R. P. Lively, M. D. Losego and R. Ramprasad, *J. Phys. Chem. B*, 2022, **126**, 5920–5930.
- 3 K. Mizrahi Rodriguez, A. X. Wu, Q. Qian, G. Han, S. Lin, F. M. Benedetti, H. Lee, W. S. Chi, C. M. Doherty and Z. P. Smith, *Macromolecules*, 2020, **53**, 6220–6234.
- 4 N. Du, H. B. Park, G. P. Robertson, M. M. Dal-Cin, T. Visser, L. Scoles and M. D. Guiver, *Nat. Mater.*, 2011, **10**, 372–375.
- 5 S. Yi, B. Ghanem, Y. Liu, I. Pinnau and W. J. Koros, *Sci. Adv.*, 2019, **5**, aaw5459.
- 6 K. Mizrahi Rodriguez, S. Lin, A. X. Wu, G. Han, J. J. Teesdale, C. M. Doherty and Z. P. Smith, *Angew. Chem. Int. Ed.*, 2021, **60**, 6593–6599.
- 7 T. Joo, K. Mizrahi Rodriguez, H. Lee, D. Acharya, C. M. Doherty and Z. P. Smith, *J. Mater. Chem. A*, 2023, **11**, 15943–15957.
- 8 C. R. Mason, L. Maynard-Atem, N. M. Al-Harbi, P. M. Budd, P. Bernardo, F. Bazzarelli, G. Clarizia and J. C. Jansen, *Macromolecules*, 2011, 44, 6471–6479.
- 9 L. M. Robeson, Z. P. Smith, B. D. Freeman and D. R. Paul, *J. Membr. Sci.*, 2014, **453**, 71–83.