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Fig. S1 (a) The electrocatalytic nitrogen reduction reaction (e-NRR) pathways (distal and 

hybrid) and the intermediate configurations corresponding to the Top and Hollow 1&3 

adsorption configurations of N2. (b) Free energy diagram of the distal pathway. (c) Free energy 

diagram of the hybrid pathway. 
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Fig. S2 Free energy diagrams of the intermediates of the fourth-period TM-Fe(110). 
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Fig. S3 Free energy diagrams of the intermediates of the fifth-period TM-Fe(110). 
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Fig. S4 Free energy diagrams of the intermediates of the sixth-period TM-Fe(110). 
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Fig. S5 The scaling relationships between the adsorption Gibbs free energy of the NRR 

intermediate (ΔG*NxHy) and the N2 adsorption Gibbs free energy (ΔG*NN) of the fourth-period 

TM-Fe(110), Pd-Fe(110) and Pt-Fe(110). 
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Fig. S6 The scaling relationships between the ΔG*NxHy and ΔG*NN of the fifth- and sixth-period 

TM-Fe(110), excluding Pd-Fe(110) and Pt-Fe(110). 
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Fig. S7 The scaling relationships between ΔG*NN and the limiting potential of the potential-

determining step (UL) of TM-Fe(110). 
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Fig. S8 The d-orbital projected density of states (PDOS) of the fourth-, fifth- and sixth-period 

TM-Fe(110).  
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Fig. S9 Three N2 adsorption configurations (M-Side, M-End and M-Away) and ΔG*NN of the 

catalysts as well as the relationships between ΔG*NN and spin d-band center of the catalysts (d).
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Fig. S10 (a) The values of the spin-up and spin-down d-band centers of TM-Fe(110). (b) The 

spin-up and spin-down d-band centers of the dopants. 
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Fig. S11 The electronic structures of the dopants in the TM-Fe(110) catalysts: (a) the number 

of spin-up and spin-down electrons (Ne), (b) the value of the spin moments, (c) the scaling

relationships between the difference in the number of spin d-electrons and the difference in the 

spin d-band centers and the spin moments. 
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Fig. S12 The scaling relationships between ΔG*NN and the d-band centers of the fourth-, fifth-, 

and sixth-period catalysts in non-spin polarization calculations.  
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Fig. S13 The d-orbital PDOS of the dopants of the fourth-, fifth-, and sixth-period TM-Fe(110). 
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Fig. S14 Integrated projected crystal orbital Hamiltonian population (ICOHP) values of the 

interaction between the TM sites and N2 of the fifth-period TM-Fe(110). 
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Fig. S15 For the fifth-period TM-Fe(110), the projected crystal orbital Hamiltonian population

(COHP) diagrams of the dopants with N2 as well as the relationship between the ICOHP and 

ΔG*NN. 
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Fig. S16 The relationship between the spin d-band centers of the dopants (𝜀ௗ
்ெ) and the G*NN

of the fourth-period TM-Fe(110). 
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Fig. S17 For the fourth-period TM-Fe(110) catalysts, the projected COHP diagrams of the 

dopants with N2 as well as the relationship between the ICOHP and ΔG*NN. 
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Fig. S18 (a) Excluding Ti, V, Cr and Mn for linear fitting. (b) Including Ti, V, Cr and Mn for

linear fitting. 
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Fig. S19 The four N2 adsorption configurations on the surfaces of TM-Fe(110) and the reaction 

pathways corresponding to the side-on and end-on adsorptions. 
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Fig. S20 Gibbs free energy changes (G) for the *NNH→*NNH2 and *NNH→*NHNH 

processes. In the e-NRR process with the M-Side and M-End adsorption configurations, the 

*NNH intermediates tend to form the *NHNH intermediates after the PCET process. 
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Fig. S21 In the enzymatic pathway corresponding to the M-End adsorption configuration, the

*NHNH→*NHNH2 processes have the higher energy barrier than the PDS of the enzymatic

pathway corresponding to the M-Side adsorption configuration. 
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Fig. S22 (a) and (b) In the reaction pathway corresponding to the M-Away and M-Top 

adsorption configurations, the *NN→*NNH processes have the higher energy barrier than the 

PDS of the enzymatic pathway corresponding to the M-Side adsorption configuration.

Therefore, the DFT energies of the reaction intermediates after the *NNH intermediate are not

calculated. (c) and (d) In the reaction pathway corresponding to the M-End-Long adsorption 

configuration, the *NN→*NNH processes of Pd-Fe(110) and the *NNH→*NNH2 processes 

of Zr-Fe(110) have the lower energy barrier than the PDS of the enzymatic pathway

corresponding to the M-Side adsorption configuration. 
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Fig. S23 In the enzymatic pathway corresponding to the M-side adsorption configuration, the

G is the energy barrier for the PDS. And in the pathway corresponding to the other four N2

adsorption conformations, the G is the energy barrier for the given electrochemical process,

which is less than or equal to the energy barrier of the PDS. 
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Fig. S24 The limiting potentials of the optimal reaction pathways for Zr-Fe(110) and Pd-

Fe(110) remain close to the volcano curve. 


