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1 Chemicals: The compounds used included ammonium metavanadate (NH4VO3, 

2 Aladdin Biochemical Technology Co., Ltd., >99%), oxalic acid dihydrate 

3 (H2C2O4·H2O, Sinopharm Chemical Reagent Co., Ltd., >99%), ethylene glycol 

4 (CH6O2, Aladdin Biochemical Technology Co., Ltd., >99%) and potassium sulfate 

5 (Shanghai Aladdin Biochemical Technology Co., Ltd., >99%). All the chemicals were 

6 used as received without further purification.

7

8 Synthesis of K-NVO: The K-intercalated NH4V4O10 was synthesized by a simple one-

9 step hydrothermal reaction. In a typical synthesis, 0.354 g NH4VO3 was added to 60 ml 

10 of distilled water and stirred for 1 h until completely dissolved. Then, 0.2835 g of 

11 H2C2O4·2H2O was added to the solution, and stirred until completely dissolved, and 

12 then 0.15 mmol of potassium sulfate was added. After that, the whole solution was 

13 transferred to a 100 mL PTFE-lined stainless-steel autoclave for a 24-hour reaction at 

14 180 °C. The powders were collected by centrifugation and washed 3 times with distilled 

15 water and absolute ethanol, and dried overnight in a vacuum oven at 60 °C. 

16

17 Synthesis of EG-NVO: The EG-intercalated NH4V4O10 was synthesized by a simple 

18 one-step hydrothermal reaction. In a typical synthesis, 0.354 g NH4V3O8 was added to 

19 60 ml of distilled water and stirred for 1 h until completely dissolved. Then, 0.2835g of 

20 H2C2O4·2H2O was added to the solution, and stirred until completely dissolved, and 

21 then 5 ml of ethylene glycol solution was added. After that, the whole solution was 

22 transferred to a 100 mL PTFE-lined stainless-steel autoclave for a 24-hour reaction at 
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1 180 °C. The powders were collected by centrifugation and washed 3 times with distilled 

2 water and absolute ethanol, and dried overnight in a vacuum oven at 60 °C.

3

4 Synthesis of K,EG-NVO: The K,EG-intercalated NH4V4O10 was synthesized by a 

5 simple one-step hydrothermal reaction. In typical synthesis, 0.354 g NH4VO3 was 

6 added to 60 ml of distilled water and stirred for 1 h until completely dissolved. Then, 

7 0.2835 g of H2C2O4·2H2O was added to the solution, and stirred until completely 

8 dissolved, and then 0.15 mmol of potassium sulfate and 5 ml of ethylene glycol solution 

9 were added. After that, the whole solution was transferred to a 100 mL PTFE-lined 

10 stainless-steel autoclave for a 24-hour reaction at 180 °C. The powders were collected 

11 by centrifugation and washed 3 times with distilled water and absolute ethanol, and 

12 dried overnight in a vacuum oven at 60 °C. 

13

14 Synthesis of NVO: The synthesis procedure of NH4V4O10 was similar to that of K-NVO, 

15 except the removal of K+.

16

17 Material Characterizations: The crystal structure of the samples was characterized by 

18 X-ray diffraction (XRD, Miniflex, Rigaku with Cu Kɑ). The micromorphology of the 

19 samples was observed by scanning electron microscopy (SEM, zeiss/sigma500). The 

20 transmission electron microscopy (TEM) and the high-resolution transmission electron 

21 microscopy (HRTEM) images were obtained using a transmission electron microscope 

22 (JEOL JEM-2100 F). The chemical compositions and bonds of the materials were 
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1 determined by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha+). 

2 Fourier-transform infrared (FT-IR) spectroscopy measurements were carried out by 

3 Bruker Vertex 70 spectrometer. Raman spectra were collected with a Renishaw in a 

4 spectrometer. Electron Paramagnetic Resonance (EPR) spectra were collected by a 

5 Bruker A300 EPR Spectrometer. Contact angles were carried out by Shanghai 

6 Xuanzhun SZ-CAMC32. Ultraviolet photoelectron spectroscopy (UPS) spectra were 

7 collected by Thermo Fisher Scientific Nexsa. 

8

9 Electrochemical Tests: Electrochemical measurements were performed on CR2032-

10 type coin cells. The working electrode was prepared by mixing electrode, acetylene 

11 black and polyvinylidene difluoride (PVDF) in an N-methyl-pyrrolidone solvent at a 

12 ratio of 7:2:1 wt % and the slurry was coated on a titanium foil. The electrode was dried 

13 at 70℃ in a vacuum oven overnight. The mass loading of the cathode material was ⁓ 1 

14 mg cm-2. A glass fiber (Whatman, GF/D) and 2.0 M Zn(CF3SO3)2 were utilized as the 

15 separator and electrolyte, respectively. The galvanostatic intermittent titration 

16 technique (GITT) and the Galvanostatic charge-discharge tests were carried out 

17 utilizing an automatic battery tester (LAND, CT2100A, China) in the voltage range of 

18 0.3−1.6 V (s Zn2+/Zn). Cyclic voltammetry (CV) was conducted on an electrochemical 

19 workstation (CHI760E, China).

20

21 Measurements of Galvanostatic Intermittent Titration Technique (GITT)

22 The GITT test was performed at 0.1 A g−1, which consisted of 5 min galvanostatic 
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1 charge (pulse) followed by a relaxation time of 10 min. The obtained GITT curves can 

2 be used to determine the zinc ion diffusion coefficients based on the following equation:

3 (S1)
𝐷 =

4𝐿2

𝜋𝜏 (∆𝐸𝑆

∆𝐸𝑡
)2                

4 where D is the diffusion coefficient, L is the diffusion length of Zn2+, corresponding to 

5 the thickness of the electrode,  represents the duration of current relaxation time, and 

6 ΔEs and ΔEt correspond to the steady-state potential change by the current pulse and 

7 voltage change under the constant current pulse, respectively. The ΔEs and ΔEt can be 

8 read and calculated by the LAND automatic battery tester.

9

10 Computational Methods

11 All of the spin-polarized density functional theory (DFT) calculations were carried out 

12 under the Device Studio platform using a first-principles calculations software (DS-

13 PAW) [1], which uses the plane wave basis and the projector augmented wave (PAW) 

14 [2-4] for the treatment of core electrons. The Perdew, Burke, and Ernzerhof exchange-

15 correlation functional within a generalized gradient approximation (GGA-PBE) [5] was 

16 used in our calculation and added van der Waals (vdW) correction. A supercell 

17 (N6H24V24O60) was constructed to model NH4V4O10, with the introduction of potassium 

18 atoms and C2H6O2 molecules to create three intercalation-modified models. In all 

19 calculations, a kinetic energy cutoff of 500 eV was adopted, and the Brillouin zone 

20 integration was performed on the (3×3×4) Monkhorst–Pack k-point mesh. The DFT+U 

21 method was employed to correct the localized 3d electrons of V with a U of 4.0 eV[6]. 

22 During geometry optimizations, all the structures were relaxed until the residual atomic 
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1 forces were less than 0.02 eV/Å, ensuring convergence of the total energy to 10−6 eV. 

2 The ionic convergence criterion for the force on each image during NEB calculations 

3 was set to 0.05 eV/Å.
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1

2 Figure S1. (a, b) SEM images of NVO.
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1

2 Figure S2. (a, b) SEM images of K-NVO.
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1

2 Figure S3. (a, b) SEM images of EG-NVO.
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1

2 Figure S4. Contact angle of electrolyte with (a) NVO, (b) K-NVO, (c) EG-NVO and 

3 (d) K, EG-NVO electrode
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1

2 Figure S5. (a) N2 adsorption/desorption isotherm, and (b) the corresponding pore size 

3 distribution of K, EG-NVO.
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1

2 Figure S6. (a) N2 adsorption/desorption isotherm, and (b) the corresponding pore size 

3 distribution of NVO.
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1

2 Figure S7. Cycling performance of NVO, K-NVO and EG-NVO at 0.5 A g−1.
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1

2 Figure S8. Rate performance of NVO, K-NVO and EG-NVO electrodes.
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1

2 Figure S9. Cycling performance of NVO, K-NVO and EG-NVO at 10 A g−1.
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1

2 Figure S10. Geometric structures of (a, b) NVO and (c, d) K, EG-NVO. 
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1

2 Figure S11. Geometric structures of (a) NVO, (b) K-NVO, (c) EG-NVO, and (d) K, 

3 EG-NVO with inserted zinc ions.
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1

2 Figure S12. Tauc plots of UV-vis absorption spectra for (a) NVO and (b) K, EG-NVO; 

3 UPS spectra of (c) NVO and (d) K, EG-NVO.
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1

2 Figure S13. (a, b) SEM images of K, EG-NVO electrode before cycling.
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1

2 Figure S14. (a, b) SEM images of K, EG-NVO electrode discharged to 0.3 V for the 

3 first time.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18



S21

1

2 Figure S15. (a, b) SEM images of K, EG-NVO electrode charged to 1.6 V for the first 

3 time.
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1

2 Figure S16. (a, b) SEM images of K, EG-NVO electrode at the 2nd discharge to 0.3 V.
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1

2 Figure S17. (a, b) SEM images of K, EG-NVO electrode at the 2nd charge to 1.6 V.
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1 Table S1 Contents of K and V in K-NVO and K,EG-NVO samples by ICP.

Sample Element
Elemental 

concentration 
(mg/kg)

Elemental 
concentration 

(mol/kg)
Chemical formula

V 5758390 112.9
K-NVO

K 22079 5.09
K0.18NH4V4O10

V 5318520 104.3
K,EG-NVO

K 19837 4.57
EG-K0.175NH4V4O10
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1 Table S2. Composition of NVO-based samples with different amounts of structural 

2 water by thermogravimetric analysis.

Sample Initial (ug) 100 ℃ (ug) wt %

NVO 5310.85 5147.00 3.07%

K-NVO 5736.14 5570.89 2.89%

EG-NVO 5612.61 5224.17 6.91%

K, EG-NVO 5685.79 5446.37 4.2%
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1 Table S3. Contents of EG in EG-NVO and K, EG-NVO samples by elemental 

2 analysis.

Sample C (wt%) EG (wt%) N (wt%) H (wt%)

EG-NVO 1.80% 4.65% 2.52% 1.38%

K, EG-NVO 0.35% 0.90% 1.83% 1.23%
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1

2 Table S4. Comparison of electrochemical performance between this work and the 

3 state-of-the-art investigations on AZIBs. 

Cathode Voltage 
Window (V) Electrolyte Specific capacity Ref.

Mg-NH4V4O10 0.2-1.6 3 M 
Zn(CF3SO3)2

410 mAh g−1 at 
0.1 A g-1 [7]

NaNVO-PANI 0.2-1.6 2 M 
Zn(CF3SO3)2

617 mAh g−1 at 
0.5 A g-1 [8]

δ-K0.49V2O5 0.3-1.5 3 M 
Zn(CF3SO3)2

361 mAh g−1 at 
0.2 A g-1 [9]

(1Zn,1ch)-VOH 0.2-1.6 3 M 
Zn(CF3SO3)2

424 mAh g−1 at 
0.5 A g-1 [10]

NiVO-BTA 0.3-1.4 3 M 
Zn(CF3SO3)2

464.2 mAh g−1 at 
0.2 A g-1 [11]

CS@ZVO 0.3-1.7 3 M 
Zn(CF3SO3)2

323 mAh g−1 at 
0.1 A g-1 [12]

α-V2O5@V2CTx 0.2-1.8 3 M 
Zn(CF3SO3)2

595.2 mAh g−1 at 
0.2 A g-1 [13]

AVO 0.2-1.6 3 M 
Zn(CF3SO3)2

427 mAh g−1 at 
0.2 A g-1 [14]

PEO-LVO 0.2-1.6 3 M 
Zn(CF3SO3)2

438.1 mAh g−1 at 
0.1 A g-1 [15]

ZVO 0.3-1.6 3 M 
Zn(CF3SO3)2

426.3 mAh g−1 at 
0.2 A g-1 [16]
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K, EG-NVO 0.3-1.6 2 M 
Zn(CF3SO3)2

604 mAh g−1 at 
0.5 A g-1

This 
work
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