Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

1	Supporting Information
2	
3	Unlocking Zn Storage Performance of Ammonium Vanadate Nanoflowers as
4	High-Capacity Cathodes for Aqueous Zinc-ion Batteries via Potassium Ion and
5	Ethylene Glycol Co-Intercalation Engineering
6	
7	Ji Chen ^{a,#} , Xiaoyue Zhang ^{b,#} , Yangjie Li ^a , Xiaoying Li ^a , Xiaoqin Zhang ^a , Yuxiang
8	Chen ^a , Qiaoji Zheng ^a , Xingqiao Wu ^b , Heng Zhang ^{c,*} , Xin Tan ^{b,*} , Dunmin Lin ^{a,*}
9	^a College of Chemistry and Materials Science, Sichuan Normal University, Chengdu
10	610066, China
11	^b Institute for Carbon Neutralization Technology , College of Chemistry and Materials
12	Engineering, Wenzhou University, Wenzhou.
13	^c School of Materials Science and Engineering, Suzhou University of Science and
14	Technology, Suzhou 215009, China.
15	
16	
17	
18	
19	
20	Experimental

[#]These authors contributed equally

*Corresponding authors: Email: zhangheng@usts.edu.cn (Heng Zhang); xintan@wzu.edu.cn (Xin Tan); ddmd222@sicnu.edu.cn (Dunmin Lin); Fax: +86 28 84760802; Tel: +86 28 84760802

Chemicals: The compounds used included ammonium metavanadate (NH₄VO₃,
 Aladdin Biochemical Technology Co., Ltd., >99%), oxalic acid dihydrate
 (H₂C₂O₄·H₂O, Sinopharm Chemical Reagent Co., Ltd., >99%), ethylene glycol
 (CH₆O₂, Aladdin Biochemical Technology Co., Ltd., >99%) and potassium sulfate
 (Shanghai Aladdin Biochemical Technology Co., Ltd., >99%). All the chemicals were
 used as received without further purification.

7

Synthesis of K-NVO: The K-intercalated NH₄V₄O₁₀ was synthesized by a simple one-8 step hydrothermal reaction. In a typical synthesis, 0.354 g NH₄VO₃ was added to 60 ml 9 of distilled water and stirred for 1 h until completely dissolved. Then, 0.2835 g of 10 $H_2C_2O_4$ ·2 H_2O was added to the solution, and stirred until completely dissolved, and 11 then 0.15 mmol of potassium sulfate was added. After that, the whole solution was 12 transferred to a 100 mL PTFE-lined stainless-steel autoclave for a 24-hour reaction at 13 180 °C. The powders were collected by centrifugation and washed 3 times with distilled 14 water and absolute ethanol, and dried overnight in a vacuum oven at 60 °C. 15

16

17 Synthesis of EG-NVO: The EG-intercalated $NH_4V_4O_{10}$ was synthesized by a simple 18 one-step hydrothermal reaction. In a typical synthesis, 0.354 g $NH_4V_3O_8$ was added to 19 60 ml of distilled water and stirred for 1 h until completely dissolved. Then, 0.2835g of 20 $H_2C_2O_4\cdot 2H_2O$ was added to the solution, and stirred until completely dissolved, and 21 then 5 ml of ethylene glycol solution was added. After that, the whole solution was 22 transferred to a 100 mL PTFE-lined stainless-steel autoclave for a 24-hour reaction at

- 1 180 °C. The powders were collected by centrifugation and washed 3 times with distilled
 2 water and absolute ethanol, and dried overnight in a vacuum oven at 60 °C.
- 3

Synthesis of K,EG-NVO: The K,EG-intercalated NH₄V₄O₁₀ was synthesized by a 4 simple one-step hydrothermal reaction. In typical synthesis, 0.354 g NH₄VO₃ was 5 added to 60 ml of distilled water and stirred for 1 h until completely dissolved. Then, 6 0.2835 g of H₂C₂O₄·2H₂O was added to the solution, and stirred until completely 7 dissolved, and then 0.15 mmol of potassium sulfate and 5 ml of ethylene glycol solution 8 were added. After that, the whole solution was transferred to a 100 mL PTFE-lined 9 stainless-steel autoclave for a 24-hour reaction at 180 °C. The powders were collected 10 by centrifugation and washed 3 times with distilled water and absolute ethanol, and 11 12 dried overnight in a vacuum oven at 60 °C.

13

14 Synthesis of NVO: The synthesis procedure of NH₄V₄O₁₀ was similar to that of K-NVO,
15 except the removal of K⁺.

16

Material Characterizations: The crystal structure of the samples was characterized by X-ray diffraction (XRD, Miniflex, Rigaku with Cu Ka). The micromorphology of the samples was observed by scanning electron microscopy (SEM, zeiss/sigma500). The transmission electron microscopy (TEM) and the high-resolution transmission electron microscopy (HRTEM) images were obtained using a transmission electron microscope (JEOL JEM-2100 F). The chemical compositions and bonds of the materials were determined by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha+).
 Fourier-transform infrared (FT-IR) spectroscopy measurements were carried out by
 Bruker Vertex 70 spectrometer. Raman spectra were collected with a Renishaw in a
 spectrometer. Electron Paramagnetic Resonance (EPR) spectra were collected by a
 Bruker A300 EPR Spectrometer. Contact angles were carried out by Shanghai
 Xuanzhun SZ-CAMC32. Ultraviolet photoelectron spectroscopy (UPS) spectra were
 collected by Thermo Fisher Scientific Nexsa.

8

Electrochemical Tests: Electrochemical measurements were performed on CR2032-9 type coin cells. The working electrode was prepared by mixing electrode, acetylene 10 black and polyvinylidene difluoride (PVDF) in an N-methyl-pyrrolidone solvent at a 11 ratio of 7:2:1 wt % and the slurry was coated on a titanium foil. The electrode was dried 12 at 70°C in a vacuum oven overnight. The mass loading of the cathode material was ~ 1 13 mg cm⁻². A glass fiber (Whatman, GF/D) and 2.0 M Zn(CF₃SO₃)₂ were utilized as the 14 separator and electrolyte, respectively. The galvanostatic intermittent titration 15 technique (GITT) and the Galvanostatic charge-discharge tests were carried out 16 utilizing an automatic battery tester (LAND, CT2100A, China) in the voltage range of 17 0.3–1.6 V (vs Zn²⁺/Zn). Cyclic voltammetry (CV) was conducted on an electrochemical 18 workstation (CHI760E, China). 19

20

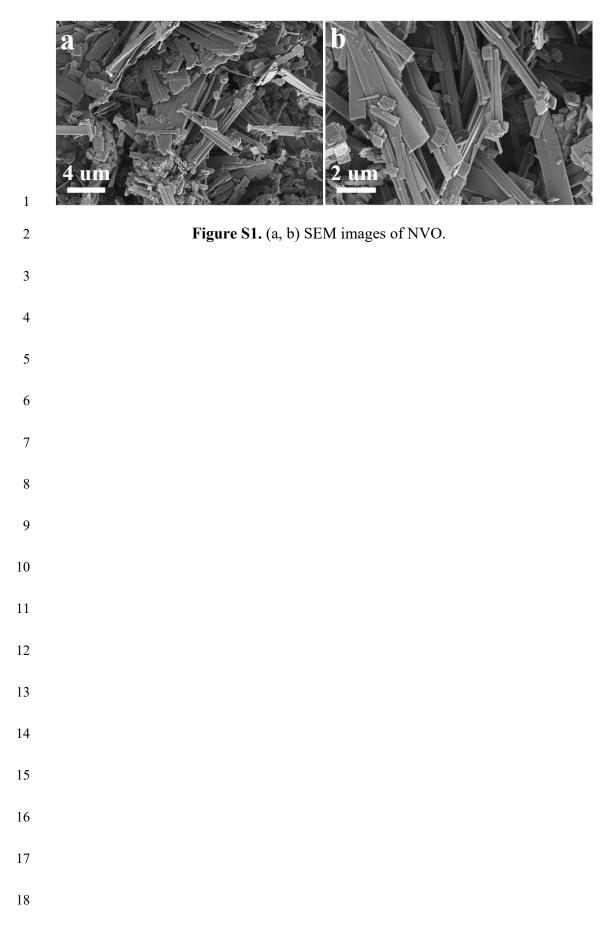
21 Measurements of Galvanostatic Intermittent Titration Technique (GITT)

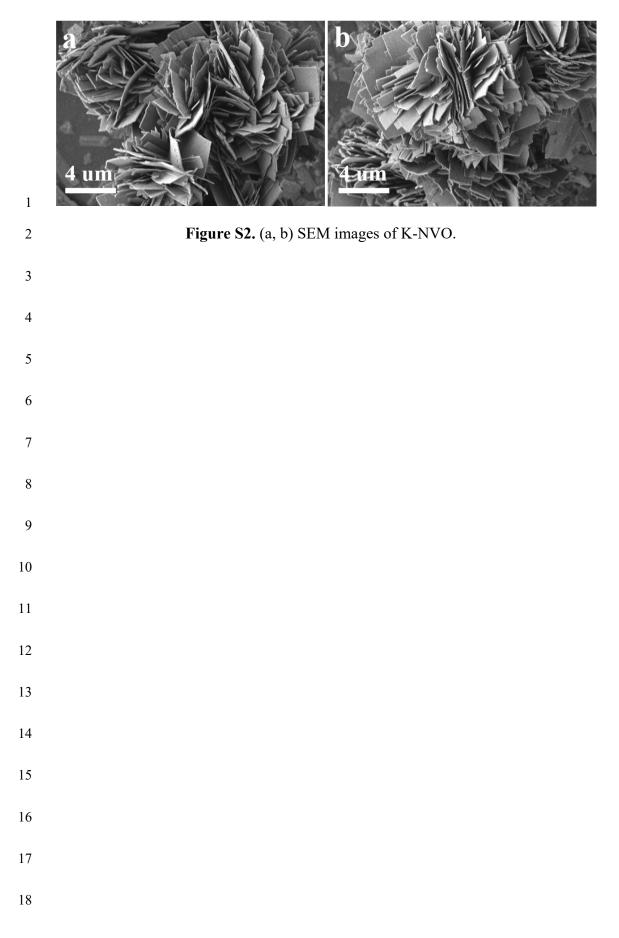
22 The GITT test was performed at 0.1 A g^{-1} , which consisted of 5 min galvanostatic

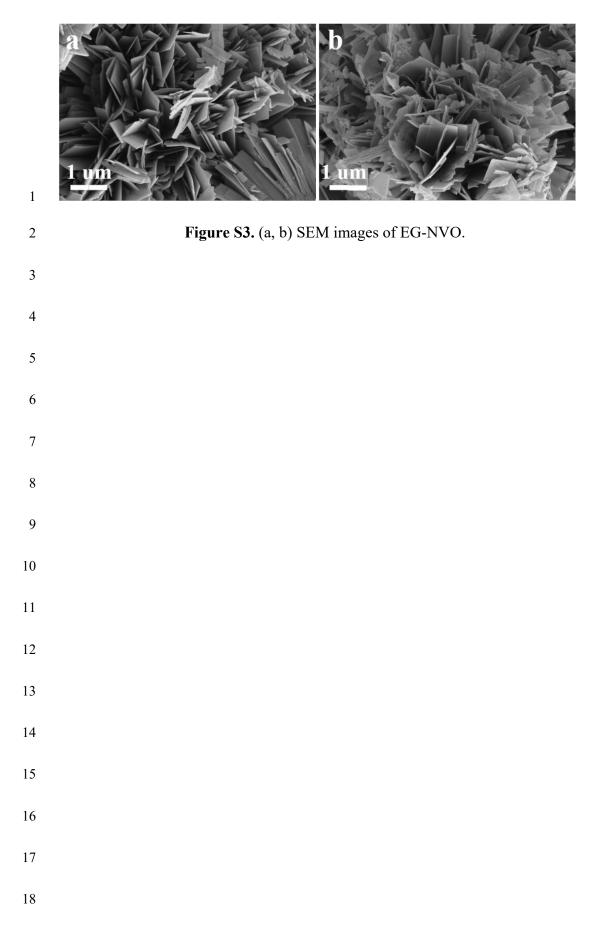
charge (pulse) followed by a relaxation time of 10 min. The obtained GITT curves can
 be used to determine the zinc ion diffusion coefficients based on the following equation:

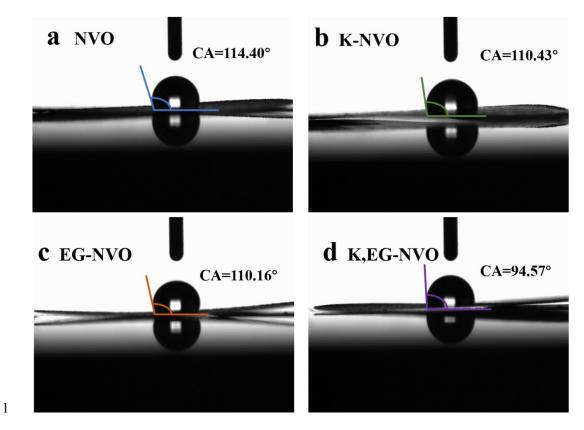
$$D = \frac{4L^2}{\pi\tau} \left(\frac{\Delta E_S}{\Delta E_t}\right)^2 \tag{S1}$$

4 where *D* is the diffusion coefficient, *L* is the diffusion length of Zn^{2+} , corresponding to 5 the thickness of the electrode, τ represents the duration of current relaxation time, and 6 ΔEs and ΔEt correspond to the steady-state potential change by the current pulse and 7 voltage change under the constant current pulse, respectively. The ΔE_s and ΔE_t can be 8 read and calculated by the LAND automatic battery tester.

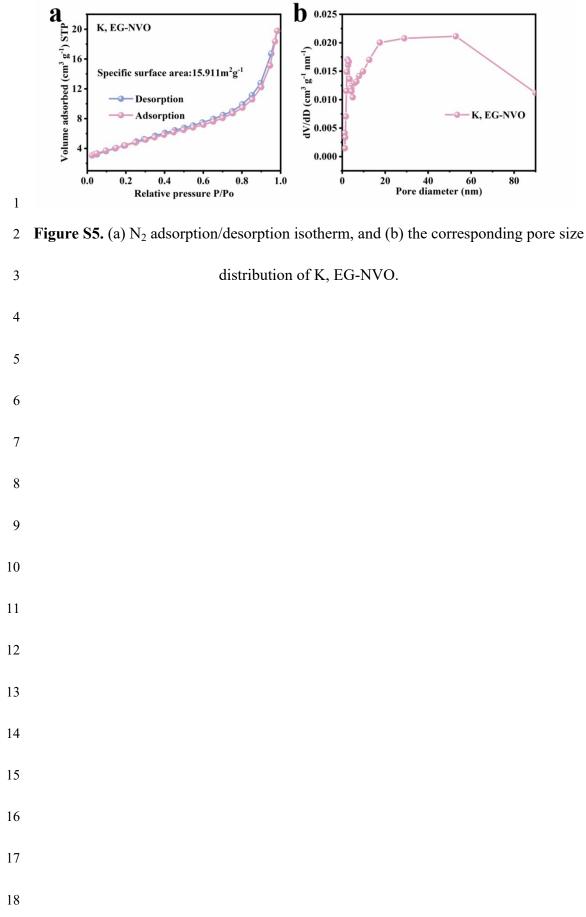

9

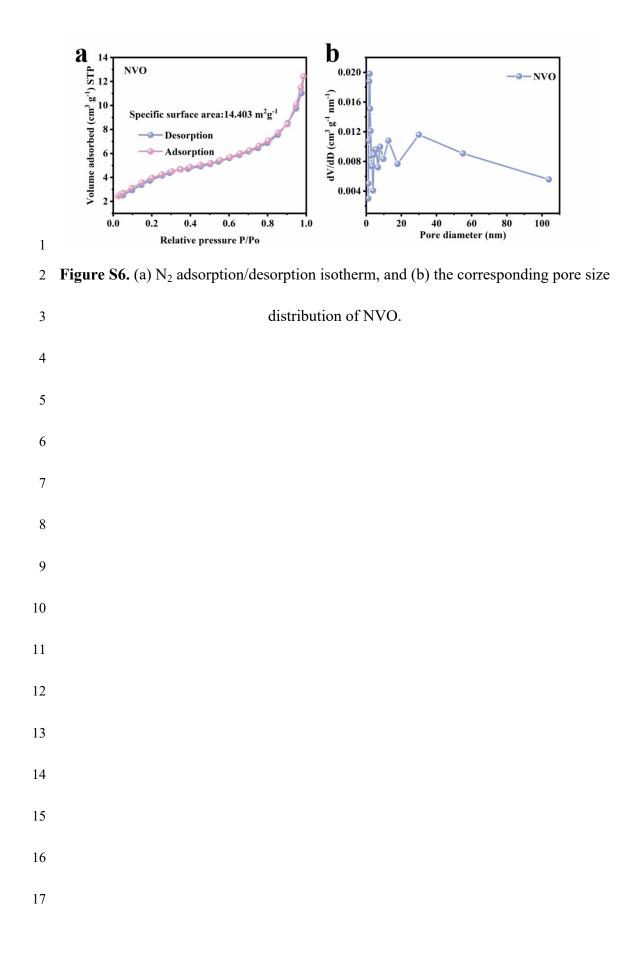

3

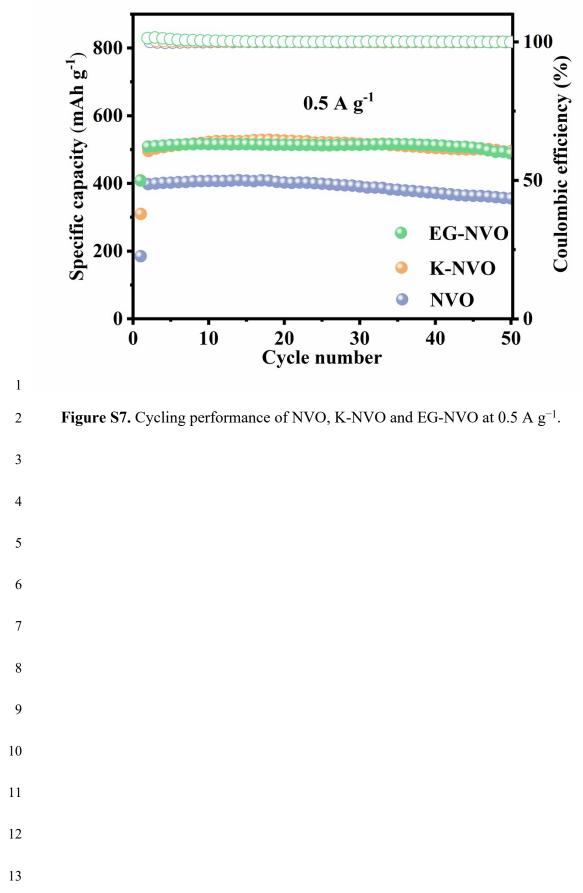

10 Computational Methods

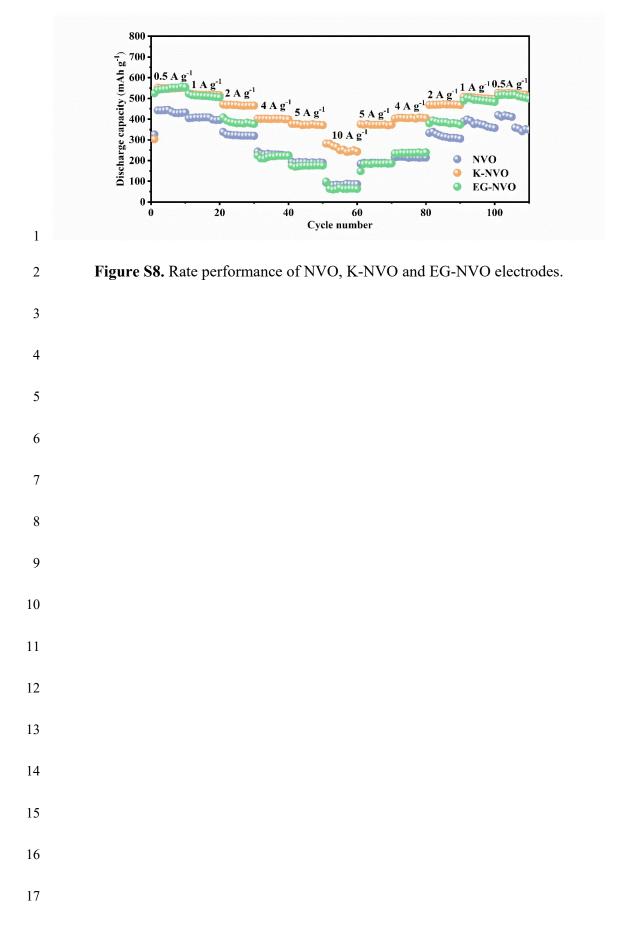

All of the spin-polarized density functional theory (DFT) calculations were carried out 11 under the Device Studio platform using a first-principles calculations software (DS-12 PAW) [1], which uses the plane wave basis and the projector augmented wave (PAW) 13 [2-4] for the treatment of core electrons. The Perdew, Burke, and Ernzerhof exchange-14 correlation functional within a generalized gradient approximation (GGA-PBE) [5] was 15 used in our calculation and added van der Waals (vdW) correction. A supercell 16 (N₆H₂₄V₂₄O₆₀) was constructed to model NH₄V₄O₁₀, with the introduction of potassium 17 atoms and C₂H₆O₂ molecules to create three intercalation-modified models. In all 18 calculations, a kinetic energy cutoff of 500 eV was adopted, and the Brillouin zone 19 integration was performed on the (3×3×4) Monkhorst–Pack k-point mesh. The DFT+U 20 method was employed to correct the localized 3d electrons of V with a U of 4.0 eV[6]. 21 During geometry optimizations, all the structures were relaxed until the residual atomic 22

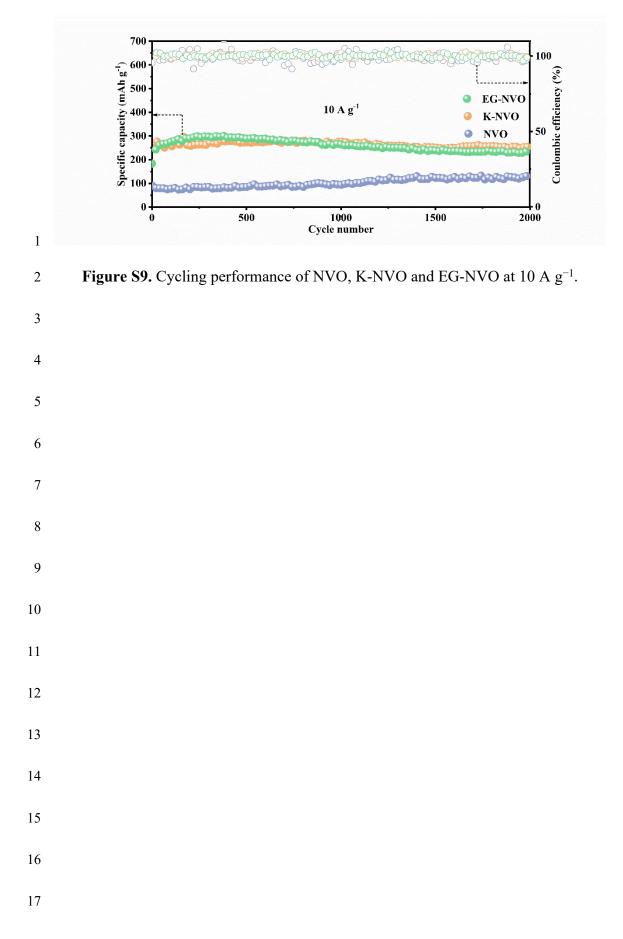
1	forces were less than 0.02 eV/Å, ensuring convergence of the total energy to $10-6$ eV.
2	The ionic convergence criterion for the force on each image during NEB calculations
3	was set to 0.05 eV/Å.
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

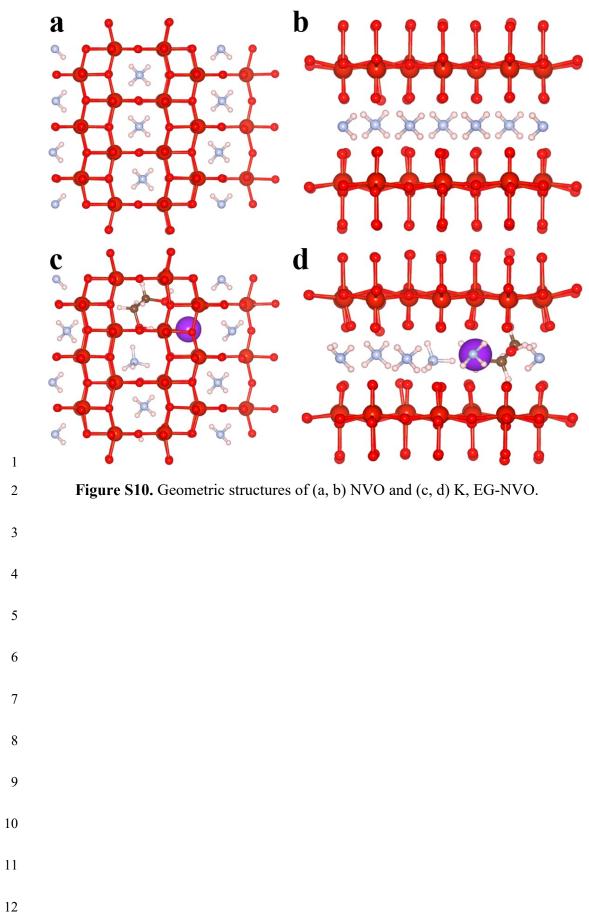




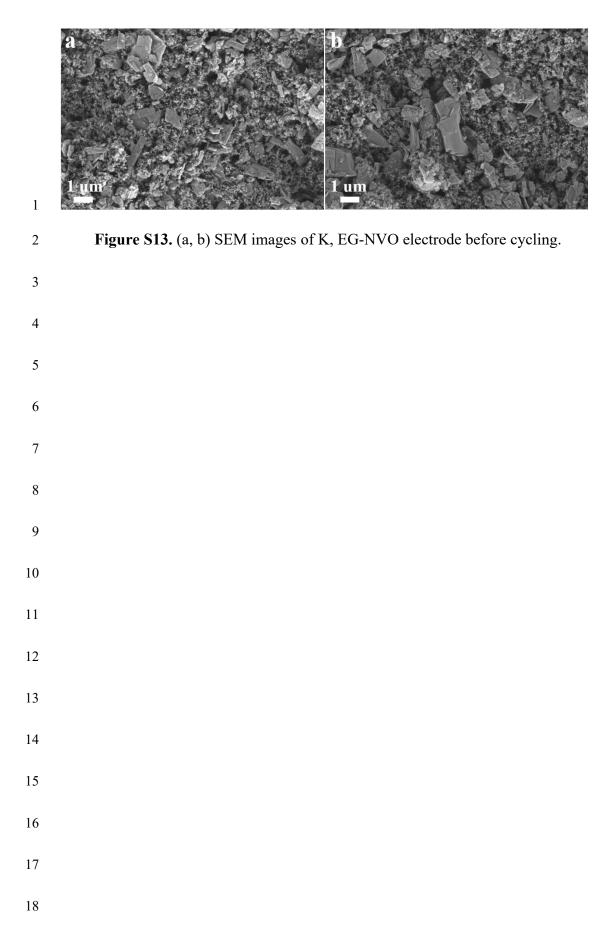


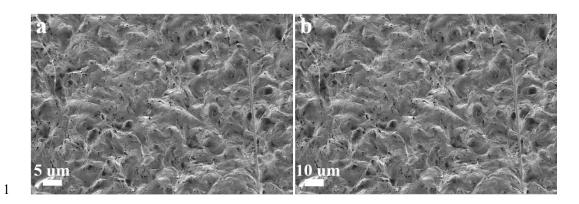

2 Figure S4. Contact angle of electrolyte with (a) NVO, (b) K-NVO, (c) EG-NVO and


3	(d) K, EG-NVO electrode
4	
5	
6	
7	
8	
9	
10	
11	

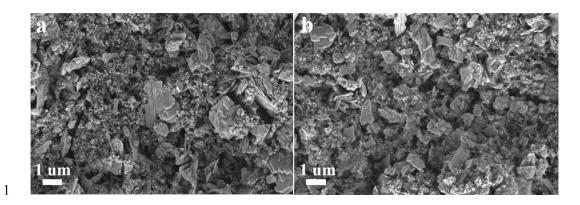


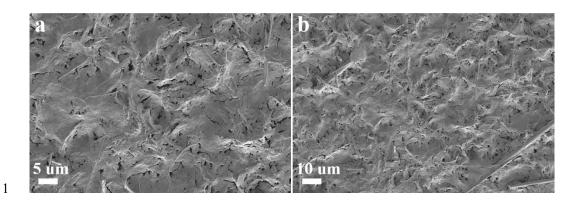




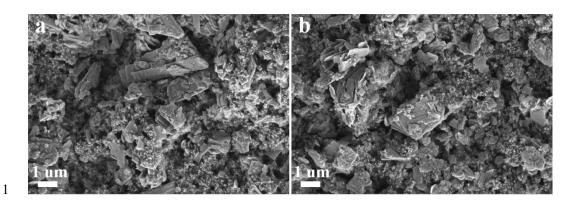

	a IIII b IIII
	c d d d d d d d d d d d d d d d d d d d
1	
2	Figure S11. Geometric structures of (a) NVO, (b) K-NVO, (c) EG-NVO, and (d) K,
3	EG-NVO with inserted zinc ions.
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	

2 Figure S12. Tauc plots of UV-vis absorption spectra for (a) NVO and (b) K, EG-NVO;


³ UPS spectra of (c) NVO and (d) K, EG-NVO.


2 Figure S14. (a, b) SEM images of K, EG-NVO electrode discharged to 0.3 V for the

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 <th>3</th> <th>first time.</th>	3	first time.
6 7 8 9 10 11 12 13 14 15 16 17	4	
7 8 9 9 10 11 12 13 14 15 16 17 17 10<	5	
 8 9 10 11 12 13 14 15 16 17 	6	
9 10 11 12 13 14 15 16 17	7	
10 11 12 13 14 15 16 17	8	
11 12 13 14 15 16 17	9	
12 13 14 15 16 17	10	
13 14 15 16 17	11	
14 15 16 17	12	
15 16 17	13	
16 17	14	
17	15	
	16	
18	17	
	18	



2 Figure S15. (a, b) SEM images of K, EG-NVO electrode charged to 1.6 V for the first

- 2 Figure S16. (a, b) SEM images of K, EG-NVO electrode at the 2nd discharge to 0.3 V.

- **Figure S17.** (a, b) SEM images of K, EG-NVO electrode at the 2nd charge to 1.6 V.
- 3 4

Sample	Element	Elemental concentration (mg/kg)	Elemental concentration (mol/kg)	Chemical formula	
K-NVO	V	5758390	112.9	K _{0.18} NH ₄ V ₄ O ₁₀	
K-IVVO	K	22079	5.09	IX 0.181 1114 V 4010	
K,EG-NVO	V	5318520	104.3	EG-K _{0.175} NH ₄ V ₄ O ₁₀	
	Κ	19837	4.57	<u> </u>	
i -					
i					
,					
)					
1					
i					
i -					
i					

 Table S1 Contents of K and V in K-NVO and K,EG-NVO samples by ICP.

2	water by thermogravimetric analysis.					
-	Sample	Initial (ug)	100 °C (ug)	wt %		
-	NVO	5310.85	5147.00	3.07%		
	K-NVO	5736.14	5570.89	2.89%		
	EG-NVO	5612.61	5224.17	6.91%		
	K, EG-NVO	5685.79	5446.37	4.2%		
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						

1 **Table S2.** Composition of NVO-based samples with different amounts of structural

2			analysis.		
	Sample	C (wt%)	EG (wt%)	N (wt%)	H (wt%)
	EG-NVO	1.80%	4.65%	2.52%	1.38%
	K, EG-NVO	0.35%	0.90%	1.83%	1.23%
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					

Table S3. Contents of EG in EG-NVO and K, EG-NVO samples by elemental

Cathode Voltage Window (V)		Electrolyte	Specific capacity	Ref.	
Mg-NH ₄ V ₄ O ₁₀	0.2-1.6	3 M Zn(CF ₃ SO ₃) ₂	410 mAh g ⁻¹ at 0.1 A g ⁻¹	[7]	
NaNVO-PANI	0.2-1.6	2 M Zn(CF ₃ SO ₃) ₂	617 mAh g ⁻¹ at 0.5 A g ⁻¹	[8]	
$\delta - K_{0.49} V_2 O_5$	0.3-1.5	3 M Zn(CF ₃ SO ₃) ₂	361 mAh g^{-1} at 0.2 A g^{-1}	[9]	
(1Zn,1ch)-VOH	0.2-1.6	3 M Zn(CF ₃ SO ₃) ₂	424 mAh g^{-1} at 0.5 A g^{-1}	[10]	
NiVO-BTA	0.3-1.4	3 M Zn(CF ₃ SO ₃) ₂	464.2 mAh g ⁻¹ at 0.2 A g ⁻¹	[11]	
CS@ZVO	0.3-1.7	3 M Zn(CF ₃ SO ₃) ₂	323 mAh g ⁻¹ at 0.1 A g ⁻¹	[12]	
α -V ₂ O ₅ @V ₂ CT _x	0.2-1.8	3 M Zn(CF ₃ SO ₃) ₂	595.2 mAh g ⁻¹ at 0.2 A g ⁻¹	[13]	
AVO	0.2-1.6	3 M Zn(CF ₃ SO ₃) ₂	427 mAh g ⁻¹ at 0.2 A g ⁻¹	[14]	
PEO-LVO	0.2-1.6	3 M Zn(CF ₃ SO ₃) ₂	438.1 mAh g ⁻¹ at 0.1 A g ⁻¹	[15]	
ZVO	0.3-1.6	3 M Zn(CF ₃ SO ₃) ₂	426.3 mAh g ⁻¹ at 0.2 A g ⁻¹	[16]	

2 Table S4. Comparison of electrochemical performance between this work and the

state-of-the-art investigations on AZIBs.

	K, EG-NVO	0.3-1.6		604 mAh g ⁻¹ at 0.5 A g ⁻¹			
1	References						
2	[1] P.E. Blöchl, Proj	ector augmente	d-wave method, Ph	nys. Rev. B. 1994, 5	0 , 17953-		
3	17979.						
4	[2] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy						
5	calculations using a p	lane-wave basis	s set, Phys. Rev. B.	1996, 54 , 11169.			
6	[3] G. Kresse, Furth	muller, J, Effi	ciency of ab-initio	total energy calcul	ations for		
7	metals and semicond	uctors using a p	lane-wave basis set	Comput. Mater. Sc.	i. 1996, 6 ,		
8	15.						
9	[4] G. Kresse, D. Jou	bert, From ultra	soft pseudopotentia	ls to the projector at	igmented-		
10	wave method, Phys. Rev. B. 1999, 59, 1758-1775.						
11	[5] J.P. Perdew, K. E	Burke, M. Ernze	rhof, Generalized G	Bradient Approximat	tion Made		
12	Simple, Phys rev lett. 1996, 77, 3865-3868.						
13	[6] S.L. Dudarev, G.A	A. Botton, S.Y.	Savrasov, C.J. Hum	phreys, A.P. Sutton,	Electron-		
14	energy-loss spectra a	and the structure	al stability of nicke	el oxide: An LSDA	1U study,		
15	Phys. Rev. B. 1998, 5	7, 1505.					
16	[7] X. Wang, Y. War	ng, A. Naveed, O	G. Li, H. Zhang, Y.	Zhou, A. Dou, M. S	u, Y. Liu,		
17	R. Guo, C.C. Li, M	agnesium Ion I	Doping and Micro-	Structural Engineer	ing Assist		
18	$NH_4V_4O_{10}$ as a High	n-Performance	Aqueous Zinc Ion	Battery Cathode, Ad	dv. Funct.		
19	Mater. 2023, 33 , 2306205.						
			~ ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				

20 [8] S. Zhao, S. Wang, J. Guo, L. Li, C. Li, Y. Sun, P. Xue, D. Wu, L. Wei, Y. Wang,

Q. Zhang, Sodium-Ion and Polyaniline Co-Intercalation into Ammonium Vanadate
 Nanoarrays Induced Enlarged Interlayer Spacing as High-Capacity and Stable
 Cathodes for Flexible Aqueous Zinc-Ion Batteries, *Adv. Funct. Mater.* 2023, *33*,
 2305700.

- 5 [9] W. He, C. Meng, Z. Ai, D. Xu, S. Liu, Y. Shao, Y. Wu, X. Hao, Achieving fast ion
 6 diffusion in aqueous zinc-ion batteries by cathode reconstruction design, *Chem. Eng. J.*7 2023, *454*, 140260.
- 8 [10] Q. Zong, Y. Zhuang, C. Liu, Q. Kang, Y. Wu, J. Zhang, J. Wang, D. Tao, Q. Zhang,
- 9 G. Cao, Dual Effects of Metal and Organic Ions Co-Intercalation Boosting the Kinetics
 10 and Stability of Hydrated Vanadate Cathodes for Aqueous Zinc-Ion Batteries, *Adv.*11 *Energy Mater.* 2023, *13*, 2301480.
- 12 [11] J. Guo, J. Liu, W. Ma, Z. Sang, L. Yin, X. Zhang, H. Chen, J. Liang, D.a. Yang,
- 13 Vanadium Oxide Intercalated with Conductive Metal–Organic Frameworks with Dual
 14 Energy-Storage Mechanism for High Capacity and High-Rate Capability Zn Ion
 15 Storage, *Adv. Funct. Mater.* 2023, *33*, 2302659.
- [12] J. Yang, J. Li, Y. Li, Z. Wang, L. Ma, W. Mai, M. Xu, L. Pan, Defect regulation
 in bimetallic oxide cathodes for significantly improving the performance of flexible
 aqueous Zn-ion batteries, *Chem. Eng. J.* 2023, *468*, 143600.
- 19 [13] W. Wang, R. Hu, C. Zhang, Y. Tao, L. Ran, Y. Li, Y. Ouyang, J. Yan, A stepwise
 20 oxidation strategy for the synthesis of amorphous V₂O₅@V₂CT_x nanohybrid cathodes
- 21 toward high-performance aqueous Zn-ion batteries, J Mater Chem A. 2023, 11, 8224-
- 22 8234.

- 1 [14] W. Deng, Z. Xu, G. Li, X. Wang, Self-Transformation Strategy Toward Vanadium
- 2 Dioxide Cathode For Advanced Aqueous Zinc Batteries, Small 2023, 19, 2207754.
- 3 [15] M. Wu, C. Shi, J. Yang, Y. Zong, Y. Chen, Z. Ren, Y. Zhao, Z. Li, W. Zhang, L.
- 4 Wang, X. Huang, W. Wen, X. Li, X. Ning, X. Ren, D. Zhu, The LiV₃O₈ Superlattice
- 5 Cathode with Optimized Zinc Ion Insertion Chemistry for High Mass-Loading Aqueous
- 6 Zinc-Ion Batteries, Adv Mater 2024.
- 7 [16] L. Wang, K.-W. Huang, J. Chen, J. Zheng, Ultralong cycle stability of aqueous
- 8 zinc-ion batteries with zinc vanadium oxide cathodes, *Sci Adv.* 2019, 5, eaax4279.