Supporting Information

Oxygen Vacancy Enhanced Catalytic Oxidation of H₂S Based on ZnO Incoperated N-doped Hollow Carbon Nanofibers for Cathodes Construction of High-performance Li-S Batteries

Minghui Sun^a, Xuzhen Wang^{*, a,b}, Xingliang Ji^a, Lei Qin^b, Zongbin Zhao^c, Jieshan

Qiu^d

^a School of Chemistry, Liaoning Key Laboratory for Energy Materials and Chemical Engineering,
 Dalian University of Technology, Dalian 116024, China.

^b Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China. & Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030000, China.

^c School of Chemical Engineering, Liaoning Key Laboratory for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

^d College of Chemical Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Corresponding author: Xuzhen Wang, *E-mail:* xzwang@dlut.edu.cn.

Figure S1. SEM image of precursor PMMA/Zn(Ac)₂ composites.

Figure S2. XRD patterns of (a) PMMA@Zn-ZIF and (b) O_d-ZnO/NHCFs samples.

Figure S3. The statistical graph of ZnO nanoparticle size distribution in O_d -ZnO/NHCFs.

Content (wt0/)	Acid treatment condition				
Content (wt%)	0.1 M	0.2 M	0.5 M	1 M	1 M (12 h)
Zn	40.32	28.52	20.29	9.69	\
ZnO	50.24	35.54	25.28	12.06	١

Table S1. Zn content (by ICP determination) in the samples after treated with different concentration of HCl solutions and the calculated ZnO loading amount in the materials.

Table S2. Modulation of VOs in O_d -ZnO/NHCFs by changing the flow rate of H_2 and their corresponding saturated capacity of H_2S (Q_s).

Sample	Flow rate of H ₂ (sccm)	VOs (%) (XPS)	$Q_{\rm S}$ (g H ₂ S/ g cat.)
ZnO/NHCFs	-	23.9	2.66
O _{d3} -ZnO/NHCFs	5	37.2	3.70
Od2-ZnO/NHCFs	10	40.6	4.15
O _{d1} -ZnO/NHCFs	20	50.3	4.64
O _{d4} -ZnO/NHCFs	50	31.6	3.08

Table S3. Results from UPS spectra in the cutoff (E_{cutoff}) , and the onset (E_i) energy regions of different samples. The ionization energy values (numerically equal to the work function (Φ) of materials) of ZnO before and after desulfurization were determined by the equation of $\Phi = 21.20 \text{ eV} - (E_{cutoff} - E_i)$.

Sample	$E_{ m cutoff}/ m eV$	$E_{\rm i}/{ m eV}$	${oldsymbol{\varPhi}}/\mathrm{eV}$
ZnO	18.34	1.34	4.20
ZnO after desulfurization	18.57	1.69	4.32
ZnS	18.83	2.03	4.40

Figure S4. Schematic diagram of the difference in value of Φ between ZnO and ZnS due to the construction of heterostructure.

Figure S5. EPR spectra of fresh O_d -ZnO/NHCFs and the spent S@O_d-ZnO/ZnS/NHCFs.

Table S4. Elemental contents in various spent catalysts after elemental S removal.

	Elemental content (wt%)		Sulfidation		
Sample	S	Zn (ICP)	degree (%)	ZnO/ZnS	
ZnO/ZnS/NHCFs	1.63	28.43	11.65	7.58	
O _{d3} -ZnO/ZnS/NHCFs	5.09	27.21	38.00	1.63	
Od2-ZnO/ZnS/NHCFs	6.45	26.78	48.92	1.04	
O _{d1} -ZnO/ZnS/NHCFs	7.18	25.99	56.12	0.78	
O _{d4} -ZnO/ZnS/NHCFs	3.38	27.69	24.79	3.03	

Table S5. Elemental contents in spent catalysts with different desulfurization duration after elemental S removal.

Sample	Desulfurization reaction time (h)	ZnO/ZnS
	20	2.19
OZnO/ZnS/NHCEs	25	1.46
	30	0.92
	36	0.78

Figure S6. Atomic structures of Li_2S , Li_2S_2 , Li_2S_4 , Li_2S_6 and Li_2S_8 adsorbed on (a) ZnO (1 0 0) and (b) O_d-ZnO (1 0 0) facets (top panels: top view; bottom panels: side view), the Zn, O, Li, S atoms are shown as spheres in grey, red, purple and yellow, respectively.