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34 Text S1. Materials

35 The pristine Enteromorpha, collected from the coast in Qingdao, China (36.15 N, 

36 120.58 E), was first rinsed with tap water, dried at 50℃ overnight, and then grounded 

37 to powders with a particle size of 50-200 μm. The chemicals, including n-hexane, 

38 benzyl alcohol (BzOH), benzaldehyde (BzH), potassium peroxymonosulfate (PMS), 

39 tert-butyl alcohol (TBA), ethyl alcohol (EtOH), furfuryl alcohol (FFA), p-

40 benzoquinone (p-BQ) and dimethyl sulfoxide (DMSO), were purchased from 

41 Sinopharm Chemical Reagent Co., Ltd (Shanghai, China) and used directly without 

42 further purification.

43 Text S2. Preparation of ESAB

44 A certain amount of Enteromorpha powders was first put into a 10 mL corundum 

45 crucible, and then experienced a pyrolysis process in N2 atmosphere at temperature of 

46 800℃ for 2 h. The heating rate was designed at 5 ℃ min-1. Next, 2 g Enteromorpha-

47 derived biochar coupled with 20 mL deionized water were sealed in an agate jar and 

48 undergone a ball-milling treatment at a rotate speed of 240 r/min for 300 min. The ball-

49 milled samples were rinsed with deionized water and ethyl alcohol separately to remove 

50 impurities. It was then collected after vacuum drying at 50℃ overnight. The ESAB 

51 obtained at different pyrolysis temperature (X) is noted as ESAB-X.

52 Text S3. Characterization of Enteromorpha-prolifera-derived super-
53 amphiphilic biochar
54 The surface morphologies corresponding elemental compositions of ESAB-800 

55 were identified using a field-emission scanning electron microscopy (SEM, SU8010) 

56 equipped with an energy dispersive spectroscopy (EDS) and a transmission electron 

57 microscope (JEOL 2100, TEM). High angle annular dark field scanning TEM 

58 (HAADF-STEM) images and corresponding elemental mapping were achieved by FEI 

59 Titan G2 80-200 TEM/STEM. N2 adsorption/desorption measurements at -196 ℃ (JW-

60 BK122W, China) were employed to determine the Brunauer-Emmett-Teller (BET) 

61 surface area and pore-size distribution of samples. X-ray diffractometer (XRD, Cu Kα, 

62 λ = 0.15406 nm, Bruker D8 Advance) at a scanning rate of 5°/min was applied to clarify 
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63 the crystal structures of catalysts. The surface functional groups were identified by 

64 Fourier transform infrared spectrometer (FTIR, Thermo Scientific, US) at a range of 

65 500-4000 cm-1. Raman spectra of samples were recorded from 250 to 4000 cm-1 on a 

66 Raman spectrometer (Thermo Fischer DXR). The X-ray photoelectron spectroscopy 

67 (XPS) analysis was performed to investigate the surface elemental compositions and 

68 chemical states of enteromorpha-prolifera-derived super-amphiphilic biochar (ESAB). 

69 The surface wettability of various samples was clarified by a contact angle tester 

70 (HARKE-SPCAX1S). The particle size distribution of Pickering emulsion was 

71 identified by using an optical microscope (XSP-8CA).

72 Text S4. Electrochemical performance measurements

73 All the electrochemical tests were carried out at room temperature on a CHI 760E 

74 electrochemical workstation (Shanghai Chenhua Instruments Inc., China), equipped 

75 with a standard three-electrode electrolytic cell using 0.5 M Na2SO4 aqueous solution 

76 as electrolyte. Pt foil and saturated Ag/AgCl electrodes were set as a counter electrode 

77 and a reference electrode, respectively.

78 The working electrodes were prepared via the following procedure, based on the 

79 previously published methods 1, 2. (i) Glassy carbon electrode was firstly polished 

80 repeatedly by employing Al2O3, and then cleaned up and dried by N2 blowing. (ii) 5.0 

81 mg of catalyst, 40 μL of Nafion (5 wt %) and 1 mL of N,N-dimethylformamide were 

82 mixed evenly via sonication for 1 h. (iii) 3 μL of suspensions was dropped onto the 

83 clean glassy carbon electrode and air-dried in the ambient environment. 

84 Electrochemical impedance spectra (EIS) were recorded at −0.3 V vs. Ag/AgCl within 

85 a frequency range from 106 to 10−1 Hz using an AC voltage at a 5 mV amplitude.

86 Text S5. Galvanic oxidation system

87 In a galvanic oxidation system, the catalyst ink (5 mg ESAB-800, 40 μL nafion in 

88 1 mL N,N-dimethylformamide) was coated on a 20 × 20 × 3 mm graphite plate for 

89 electron channel and adsorption plate for BzOH and PMS. The loading amount of 

90 catalyst was about 0.19 mg/cm2. A copper wire was used to connect the two electrodes 
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91 for inter cell electron transfer. The salt bridge was prepared by adding the mixture of 3 

92 g agar and 30 g KCl in 97 ml water into U-shaped glass tube and cool down it to room 

93 temperature.

94

95

96
97 Fig. S1. Calibration curves of benzyl alcohol (a) and benzaldehyde (b).
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114

115 Fig. S2. FTIR spectra of Enteromorpha, ESAB-600, ESAB-700, ESAB-800 and ESAB-900.
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129

130 Fig. S3. Survey XPS spectra of Enteromorpha, ESAB-600, ESAB-700, ESAB-800 and ESAB-
131 900.
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148

149 Fig. S4. Atomic percentage (at%) of C, N and O in Enteromorpha, ESAB-600, ESAB-700, 
150 ESAB-800 and ESAB-900.
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168
169 Fig. S5. Absolute contents of pyridinic N, pyrrolic N, graphitic N and pyridine N-oxide in each 
170 ESAB by the deconvolution of N1s XPS spectra.
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197
198 Fig. S6. Schematic illustration of various nitrogen species doped in ESAB, namely, pyridinic 
199 N, pyrrolic N, graphitic N and pyridine N-oxide (i).
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219

220 Fig. S7. Adsorption energies (ΔEs) of H2O to pristine graphene (PG), pyrrolic N-doped 
221 graphene (PYNG), graphitic N-doped graphene (GTNG), pyridinic N-doped graphene 
222 (PDNG), and pyridine N-oxide-doped graphene (PDNOG).
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249

250 Fig. S8. The distance between H atom in H2O and N atom in graphene, i.e., OH⋅⋅⋅N. a: pyrrolic 
251 N-doped graphene; (b) graphitic N-doped graphene; (c) pyridinic N-doped graphene; (d) 
252 oxidized pyridinic N-doped graphene.
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269
270 Fig. S9. Distributions of electrostatic potential (ESP) for pristine graphene (PG), pyrrolic N-
271 doped graphene (PYNG), graphitic N-doped graphene (GTNG), pyridinic N-doped graphene 
272 (PDNG), oxidized pyridinic N-doped graphene (PDNOG) and H2O molecule.
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285
286 Fig. S10. Surface area in each electrostatic potential (ESP) range on the Van der Waals surface 
287 of PG (a), PYNG (b), GTNG (c), PDNG (d), PDNOG (e) and H2O molecule.
288

289 Figs. S9-10 display the electrostatic potential (ESP) distribution of PG, PYNG, GTNG, 

290 PDNG, PDNOG and H2O molecule. It is observed that the incorporation of pyridinic 

291 N and pyridinic N-oxide highly improved the local electronegativity of PG. As a result, 

292 strong electrostatic attraction interaction can be formed between H atoms in H2O 

293 molecule and pyridinic N (pyridinic N-oxide), thus promoting the water uptake to keep 

294 super-hydrophilic.
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307
308 Fig. S11. Schematic diagrams of vacancy and hole defects (a), edge defects (b), topological 
309 defects (c), heteroatom doping defects (d) in ESAB.
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311

312 Fig. S12. GC-MS spectra of chromatographically pure benzyl alcohol (a) and benzaldehyde 
313 (b).
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333
334 Fig. S13. Optimized binding configurations of PMS with pristine graphene (PG), pyridinic N-
335 doped graphene (PDNG), pyrrolic N-doped graphene (PYNG), graphitic N-doped graphene 
336 (GTNG) and pyridine N-oxide-doped graphene (PDNOG), as shown in both top and front 
337 views.
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362

363
364 Fig. S14. Adsorption energies (ΔEs) of PMS to pristine graphene (PG), pyridinic N-doped 
365 graphene (PDNG), pyrrolic N-doped graphene (PYNG), graphitic N-doped graphene (GTNG) 
366 and pyridine N-oxide-doped graphene (PDNOG, g).
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390

391
392 Fig. S15. Reduced density gradient (RDG) isosurfaces (s = 0.5 a.u.) by the values of sign(λ2)ρ 
393 for PG-PMS (a), PDNG-PMS (b), PYNG-PMS (c), GTNG-PMS (d) and PDNOG-PMS (e) 
394 systems.
395

396 To clarify the specific interaction between PMS and various N-doped graphene 

397 fragments, reduced density gradient (RDG) function analysis was further carried out 

398 (Fig. S15). For both nitrogen-free and nitrogen-doped graphene sheets, a distinct green 

399 region is observed at their interface with PMS molecule, demonstrating the presence of 

400 van der Waals forces 3, 4.
401
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403
404 Fig. S16. EPR spectra in PMS/ESAB-800 system using DMPO for capturing SO4

•- and •OH.
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418
419 Fig. S17. EPR spectra for TEMP-1O2: without (a) and with (b) adding p-BQ (b).
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442

443 Fig. S18. Digital image of galvanic oxidation system (GOS).
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461 Table S1 UPLC analysis methods for BzOH and BzH.

Samples Mobile phase Wavelength (nm)
Flow rate (mL 

min-1)

Column 

temperature (℃)

BzOH MeOH/H2O = 7/3 215 0.8 25

BzH MeOH/H2O = 9/1 250 0.8 25

462

463

464

465 Table S2 The atomic percent of C, N and O in Enteromorpha, ESAB-600, ESAB-700, ESAB-
466 800 and ESAB-900.

Sample C (at%) N (at%) O (at%) C/O ratio

Enteromorpha 64.91 7.56 29.53 2.20

ESAB-600 85.01 6.75 8.98 9.47

ESAB-700 86.09 6.29 9.82 8.77

ESAB-800 87.11 6.61 9.47 9.20

ESAB-900 88.56 3.72 8.34 10.62

467

468
469
470 Table S3 Surface properties of the as-prepared catalysts.

Samples
BET surface area 

(m2 g-1)

Total pore volume 

(cm3 g-1)

Average pore diameter 

(nm)

ESAB-600 104 0.20 7.926

ESAB-700 100 0.19 7.995

ESAB-800 171 0.21 7.514

ESAB-900 189 0.22 7.081
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