

Text S1. Materials

 The pristine *Enteromorpha*, collected from the coast in Qingdao, China (36.15 N, 120.58 E), was first rinsed with tap water, dried at 50℃ overnight, and then grounded to powders with a particle size of 50-200 μm. The chemicals, including n-hexane, benzyl alcohol (BzOH), benzaldehyde (BzH), potassium peroxymonosulfate (PMS), tert-butyl alcohol (TBA), ethyl alcohol (EtOH), furfuryl alcohol (FFA), p- benzoquinone (p-BQ) and dimethyl sulfoxide (DMSO), were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China) and used directly without further purification.

Text S2. Preparation of ESAB

 A certain amount of *Enteromorpha* powders was first put into a 10 mL corundum 45 crucible, and then experienced a pyrolysis process in N_2 atmosphere at temperature of 800℃ for 2 h. The heating rate was designed at 5 ℃ min-1 . Next, 2 g *Enteromorpha*- derived biochar coupled with 20 mL deionized water were sealed in an agate jar and undergone a ball-milling treatment at a rotate speed of 240 r/min for 300 min. The ball- milled samples were rinsed with deionized water and ethyl alcohol separately to remove impurities. It was then collected after vacuum drying at 50℃ overnight. The ESAB obtained at different pyrolysis temperature (X) is noted as ESAB-X.

Text S3. Characterization of Enteromorpha-prolifera-derived super-amphiphilic biochar

 The surface morphologies corresponding elemental compositions of ESAB-800 were identified using a field-emission scanning electron microscopy (SEM, SU8010) equipped with an energy dispersive spectroscopy (EDS) and a transmission electron microscope (JEOL 2100, TEM). High angle annular dark field scanning TEM (HAADF-STEM) images and corresponding elemental mapping were achieved by FEI 59 Titan G2 80-200 TEM/STEM. N₂ adsorption/desorption measurements at -196 °C (JW- BK122W, China) were employed to determine the Brunauer-Emmett-Teller (BET) surface area and pore-size distribution of samples. X-ray diffractometer (XRD, Cu Kα, $\lambda = 0.15406$ nm, Bruker D8 Advance) at a scanning rate of $5^{\circ}/$ min was applied to clarify

 the crystal structures of catalysts. The surface functional groups were identified by Fourier transform infrared spectrometer (FTIR, Thermo Scientific, US) at a range of 500-4000 cm-1 . Raman spectra of samples were recorded from 250 to 4000 cm-1 on a Raman spectrometer (Thermo Fischer DXR). The X-ray photoelectron spectroscopy (XPS) analysis was performed to investigate the surface elemental compositions and chemical states of enteromorpha-prolifera-derived super-amphiphilic biochar (ESAB). The surface wettability of various samples was clarified by a contact angle tester (HARKE-SPCAX1S). The particle size distribution of Pickering emulsion was identified by using an optical microscope (XSP-8CA).

Text S4. Electrochemical performance measurements

 All the electrochemical tests were carried out at room temperature on a CHI 760E electrochemical workstation (Shanghai Chenhua Instruments Inc., China), equipped 75 with a standard three-electrode electrolytic cell using $0.5 M Na₂SO₄$ aqueous solution as electrolyte. Pt foil and saturated Ag/AgCl electrodes were set as a counter electrode and a reference electrode, respectively.

 The working electrodes were prepared via the following procedure, based on the 79 previously published methods $1, 2$. (i) Glassy carbon electrode was firstly polished 80 repeatedly by employing A_2O_3 , and then cleaned up and dried by N_2 blowing. (ii) 5.0 mg of catalyst, 40 μL of Nafion (5 wt %) and 1 mL of N,N-dimethylformamide were mixed evenly via sonication for 1 h. (iii) 3 μL of suspensions was dropped onto the clean glassy carbon electrode and air-dried in the ambient environment. Electrochemical impedance spectra (EIS) were recorded at −0.3 V *vs*. Ag/AgCl within 85 a frequency range from 10^6 to 10^{-1} Hz using an AC voltage at a 5 mV amplitude.

Text S5. Galvanic oxidation system

 In a galvanic oxidation system, the catalyst ink (5 mg ESAB-800, 40 μL nafion in 88 1 mL N,N-dimethylformamide) was coated on a $20 \times 20 \times 3$ mm graphite plate for electron channel and adsorption plate for BzOH and PMS. The loading amount of 90 catalyst was about 0.19 mg/cm². A copper wire was used to connect the two electrodes

 for inter cell electron transfer. The salt bridge was prepared by adding the mixture of 3 g agar and 30 g KCl in 97 ml water into U-shaped glass tube and cool down it to room temperature.

-
-

Fig. S4. Atomic percentage (at%) of C, N and O in *Enteromorpha*, ESAB-600, ESAB-700,

- ESAB-800 and ESAB-900.
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-

Fig. S5. Absolute contents of pyridinic N, pyrrolic N, graphitic N and pyridine N-oxide in each

ESAB by the deconvolution of N1s XPS spectra.

-
- **Fig. S6.** Schematic illustration of various nitrogen species doped in ESAB, namely, pyridinic N, pyrrolic N, graphitic N and pyridine N-oxide (i).
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

 Fig. S7. Adsorption energies (ΔEs) of H2O to pristine graphene (PG), pyrrolic N-doped graphene (PYNG), graphitic N-doped graphene (GTNG), pyridinic N-doped graphene (PDNG), and pyridine N-oxide-doped graphene (PDNOG).

-
-

250 **Fig. S8.** The distance between H atom in H₂O and N atom in graphene, i.e., OH⋅⋅⋅N. a: pyrrolic N-doped graphene; (b) graphitic N-doped graphene; (c) pyridinic N-doped graphene; (d) oxidized pyridinic N-doped graphene.

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Fig. S9. Distributions of electrostatic potential (ESP) for pristine graphene (PG), pyrrolic N-

- doped graphene (PYNG), graphitic N-doped graphene (GTNG), pyridinic N-doped graphene
- 272 (PDNG), oxidized pyridinic N-doped graphene (PDNOG) and H₂O molecule.
-

-
-

-
-
-

-
-

 Fig. S10. Surface area in each electrostatic potential (ESP) range on the Van der Waals surface 287 of PG (a), PYNG (b), GTNG (c), PDNG (d), PDNOG (e) and $H₂O$ molecule.

 Figs. S9-10 display the electrostatic potential (ESP) distribution of PG, PYNG, GTNG, 290 PDNG, PDNOG and H_2O molecule. It is observed that the incorporation of pyridinic N and pyridinic N-oxide highly improved the local electronegativity of PG. As a result, 292 strong electrostatic attraction interaction can be formed between H atoms in H_2O molecule and pyridinic N (pyridinic N-oxide), thus promoting the water uptake to keep super-hydrophilic.

-
-
-
-
-
-

-
-
-

 Fig. S11. Schematic diagrams of vacancy and hole defects (a), edge defects (b), topological defects (c), heteroatom doping defects (d) in ESAB.

 Fig. S13. Optimized binding configurations of PMS with pristine graphene (PG), pyridinic N- doped graphene (PDNG), pyrrolic N-doped graphene (PYNG), graphitic N-doped graphene (GTNG) and pyridine N-oxide-doped graphene (PDNOG), as shown in both top and front views.

-
-
-
-
-

-
-

-
-

-
-
-

-
-
-

 Fig. S14. Adsorption energies (ΔEs) of PMS to pristine graphene (PG), pyridinic N-doped graphene (PDNG), pyrrolic N-doped graphene (PYNG), graphitic N-doped graphene (GTNG) and pyridine N-oxide-doped graphene (PDNOG, g).

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

392 **Fig. S15.** Reduced density gradient (RDG) isosurfaces (s = 0.5 a.u.) by the values of sign(λ_2) ρ for PG-PMS (a), PDNG-PMS (b), PYNG-PMS (c), GTNG-PMS (d) and PDNOG-PMS (e) systems.

 To clarify the specific interaction between PMS and various N-doped graphene fragments, reduced density gradient (RDG) function analysis was further carried out (Fig. S15). For both nitrogen-free and nitrogen-doped graphene sheets, a distinct green region is observed at their interface with PMS molecule, demonstrating the presence of 400 van der Waals forces $3, 4$.

-
-

Samples	Mobile phase	Wavelength (nm)	Flow rate (mL	Column
			min^{-1})	temperature $(^{\circ}C)$
BzOH	$MeOH/H2O = 7/3$	215	0.8	25
BzH	$MeOH/H2O = 9/1$	250	0.8	25

461 **Table S1** UPLC analysis methods for BzOH and BzH.

463

464

465 **Table S2** The atomic percent of C, N and O in *Enteromorpha*, ESAB-600, ESAB-700, ESAB-466 800 and ESAB-900.

000 and E_{D} 10^{-} 700 .						
Sample	C (at%)	N (at%)	$O (at\%)$	C/O ratio		
Enteromorpha	64.91	7.56	29.53	2.20		
ESAB-600	85.01	6.75	8.98	9.47		
ESAB-700	86.09	6.29	9.82	8.77		
ESAB-800	87.11	6.61	9.47	9.20		
ESAB-900	88.56	3.72	8.34	10.62		

467

468

469

470 **Table S3** Surface properties of the as-prepared catalysts.

471

472

473

474

References

- 1. Y. N. Shang, X. Xu, Z. H. Wang, B. Jin, R. Wang, Z. F. Ren, B. Y. Gao and Q. Y. Yue,
- *Acs Sustainable Chemistry & Engineering*, 2018, **6**, 6920-6931.
- 2. C. Chen, T. F. Ma, Y. N. Shang, B. Y. Gao, B. Jin, H. B. Dan, Q. Li, Q. Y. Yue, Y. W. Li,
- Y. Wang and X. Xu, *Applied Catalysis B-Environmental*, 2019, **250**, 382-395.
- 3. C. Li, X. S. Liu, Y. L. Han, Q. Guo, W. B. Yang, Q. Liu, B. Song, X. L. Zheng and S. Y.
- Tao, *Cell Reports Physical Science*, 2021, **2**.
- 4. H. Dan, Y. Gao, L. Feng, W. Yin, X. Xu, B. Gao and Q. Yue, *Journal of Hazardous*
- *Materials*, 2023, **445**, 130469.