1	Supporting Information
2	
3	Accelerated selective oxidation of benzyl alcohol to
4	benzaldehyde via a self-catalyzed Pickering emulsion
5	microreactor
6 7	Hongbing Dan ^{a,b} , Han Zhao ^a , Yue Gao ^{a,*} , Baiyu Zhang ^b , Xing Xu ^a , Qinyan Yue ^a , Tiina Leiviskä ^c , Bo Jin ^d , Bing Chen ^b and Baoyu Gao ^a
8 9	a. Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR
10 11 12	 China b. Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B
13	3X5, Canada
14 15	c. Chemical Process Engineering, University of Oulu, PO Box 4300, FIN-90014, Oulu, Finland d. School of Chemical Engineering. The University of Adelaide, 5005 Adelaide, Australia
16	a. Senoor of Chemical Engineering, The Oniversity of Adelaide, 5005 Adelaide, Australia
17	
18	*Corresponding author:
10	E-mail: vgao@sdu edu cn (V. Gao)
19	E-man. <u>ygao(@suu.euu.en</u> (1. Gao).
20	
21	
22	
23	
24	This Supporting Information includes
25	21 Pages
26	5 Texts
27	16 Figures
28	3 Tables
29	
30	
31	
32	
33	

34 Text S1. Materials

35 The pristine *Enteromorpha*, collected from the coast in Qingdao, China (36.15 N, 120.58 E), was first rinsed with tap water, dried at 50°C overnight, and then grounded 36 to powders with a particle size of 50-200 µm. The chemicals, including n-hexane, 37 benzyl alcohol (BzOH), benzaldehyde (BzH), potassium peroxymonosulfate (PMS), 38 tert-butyl alcohol (TBA), ethyl alcohol (EtOH), furfuryl alcohol (FFA), p-39 benzoquinone (p-BQ) and dimethyl sulfoxide (DMSO), were purchased from 40 41 Sinopharm Chemical Reagent Co., Ltd (Shanghai, China) and used directly without further purification. 42

43 Text S2. Preparation of ESAB

A certain amount of Enteromorpha powders was first put into a 10 mL corundum 44 crucible, and then experienced a pyrolysis process in N2 atmosphere at temperature of 45 800°C for 2 h. The heating rate was designed at 5 °C min⁻¹. Next, 2 g Enteromorpha-46 derived biochar coupled with 20 mL deionized water were sealed in an agate jar and 47 undergone a ball-milling treatment at a rotate speed of 240 r/min for 300 min. The ball-48 milled samples were rinsed with deionized water and ethyl alcohol separately to remove 49 impurities. It was then collected after vacuum drying at 50°C overnight. The ESAB 50 obtained at different pyrolysis temperature (X) is noted as ESAB-X. 51

52 Text S3. Characterization of Enteromorpha-prolifera-derived super-53 amphiphilic biochar

The surface morphologies corresponding elemental compositions of ESAB-800 54 were identified using a field-emission scanning electron microscopy (SEM, SU8010) 55 equipped with an energy dispersive spectroscopy (EDS) and a transmission electron 56 microscope (JEOL 2100, TEM). High angle annular dark field scanning TEM 57 (HAADF-STEM) images and corresponding elemental mapping were achieved by FEI 58 Titan G2 80-200 TEM/STEM. N2 adsorption/desorption measurements at -196 °C (JW-59 BK122W, China) were employed to determine the Brunauer-Emmett-Teller (BET) 60 surface area and pore-size distribution of samples. X-ray diffractometer (XRD, Cu K α , 61 $\lambda = 0.15406$ nm, Bruker D8 Advance) at a scanning rate of 5°/min was applied to clarify 62

the crystal structures of catalysts. The surface functional groups were identified by 63 Fourier transform infrared spectrometer (FTIR, Thermo Scientific, US) at a range of 64 500-4000 cm⁻¹. Raman spectra of samples were recorded from 250 to 4000 cm⁻¹ on a 65 Raman spectrometer (Thermo Fischer DXR). The X-ray photoelectron spectroscopy 66 (XPS) analysis was performed to investigate the surface elemental compositions and 67 chemical states of enteromorpha-prolifera-derived super-amphiphilic biochar (ESAB). 68 The surface wettability of various samples was clarified by a contact angle tester 69 (HARKE-SPCAX1S). The particle size distribution of Pickering emulsion was 70 identified by using an optical microscope (XSP-8CA). 71

72 Text S4. Electrochemical performance measurements

All the electrochemical tests were carried out at room temperature on a CHI 760E electrochemical workstation (Shanghai Chenhua Instruments Inc., China), equipped with a standard three-electrode electrolytic cell using 0.5 M Na₂SO₄ aqueous solution as electrolyte. Pt foil and saturated Ag/AgCl electrodes were set as a counter electrode and a reference electrode, respectively.

The working electrodes were prepared via the following procedure, based on the 78 previously published methods ^{1, 2}. (i) Glassy carbon electrode was firstly polished 79 repeatedly by employing Al₂O₃, and then cleaned up and dried by N₂ blowing. (ii) 5.0 80 mg of catalyst, 40 µL of Nafion (5 wt %) and 1 mL of N,N-dimethylformamide were 81 mixed evenly via sonication for 1 h. (iii) 3 µL of suspensions was dropped onto the 82 clean glassy carbon electrode and air-dried in the ambient environment. 83 Electrochemical impedance spectra (EIS) were recorded at -0.3 V vs. Ag/AgCl within 84 a frequency range from 10^6 to 10^{-1} Hz using an AC voltage at a 5 mV amplitude. 85

86 Text S5. Galvanic oxidation system

In a galvanic oxidation system, the catalyst ink (5 mg ESAB-800, 40 μ L nafion in 1 mL N,N-dimethylformamide) was coated on a 20 × 20 × 3 mm graphite plate for electron channel and adsorption plate for BzOH and PMS. The loading amount of catalyst was about 0.19 mg/cm². A copper wire was used to connect the two electrodes

91 for inter cell electron transfer. The salt bridge was prepared by adding the mixture of 3
92 g agar and 30 g KCl in 97 ml water into U-shaped glass tube and cool down it to room
93 temperature.

- 94
- 95

149 Fig. S4. Atomic percentage (at%) of C, N and O in Enteromorpha, ESAB-600, ESAB-700,

- 150 ESAB-800 and ESAB-900.

169 Fig. S5. Absolute contents of pyridinic N, pyrrolic N, graphitic N and pyridine N-oxide in each

170 ESAB by the deconvolution of N1s XPS spectra.

- 198 Fig. S6. Schematic illustration of various nitrogen species doped in ESAB, namely, pyridinic
- 199 N, pyrrolic N, graphitic N and pyridine N-oxide (i).

Fig. S7. Adsorption energies (Δ Es) of H₂O to pristine graphene (PG), pyrrolic N-doped graphene (PYNG), graphitic N-doped graphene (GTNG), pyridinic N-doped graphene (222 (PDNG), and pyridine N-oxide-doped graphene (PDNOG).

Fig. S8. The distance between H atom in H_2O and N atom in graphene, i.e., $OH \cdots N$. a: pyrrolic N-doped graphene; (b) graphitic N-doped graphene; (c) pyridinic N-doped graphene; (d) oxidized pyridinic N-doped graphene.

270 Fig. S9. Distributions of electrostatic potential (ESP) for pristine graphene (PG), pyrrolic N-

- 271 doped graphene (PYNG), graphitic N-doped graphene (GTNG), pyridinic N-doped graphene
- 272 (PDNG), oxidized pyridinic N-doped graphene (PDNOG) and H₂O molecule.

_, 0

Fig. S10. Surface area in each electrostatic potential (ESP) range on the Van der Waals surface
of PG (a), PYNG (b), GTNG (c), PDNG (d), PDNOG (e) and H₂O molecule.

Figs. S9-10 display the electrostatic potential (ESP) distribution of PG, PYNG, GTNG, PDNG, PDNOG and H₂O molecule. It is observed that the incorporation of pyridinic N and pyridinic N-oxide highly improved the local electronegativity of PG. As a result, strong electrostatic attraction interaction can be formed between H atoms in H₂O molecule and pyridinic N (pyridinic N-oxide), thus promoting the water uptake to keep super-hydrophilic.

308 Fig. S11. Schematic diagrams of vacancy and hole defects (a), edge defects (b), topological309 defects (c), heteroatom doping defects (d) in ESAB.

333PG-PMSPDNG-PMSPYNG-PMSGTNG-PMSPDNOG-PMS334Fig. S13. Optimized binding configurations of PMS with pristine graphene (PG), pyridinic N-335doped graphene (PDNG), pyrrolic N-doped graphene (PYNG), graphitic N-doped graphene336(GTNG) and pyridine N-oxide-doped graphene (PDNOG), as shown in both top and front337views.

Fig. S14. Adsorption energies (ΔEs) of PMS to pristine graphene (PG), pyridinic N-doped
graphene (PDNG), pyrrolic N-doped graphene (PYNG), graphitic N-doped graphene (GTNG)
and pyridine N-oxide-doped graphene (PDNOG, g).

S17

Fig. S15. Reduced density gradient (RDG) isosurfaces (s = 0.5 a.u.) by the values of sign(λ_2) ρ for PG-PMS (a), PDNG-PMS (b), PYNG-PMS (c), GTNG-PMS (d) and PDNOG-PMS (e) systems.

396 To clarify the specific interaction between PMS and various N-doped graphene 397 fragments, reduced density gradient (RDG) function analysis was further carried out 398 (Fig. S15). For both nitrogen-free and nitrogen-doped graphene sheets, a distinct green 399 region is observed at their interface with PMS molecule, demonstrating the presence of 400 van der Waals forces ^{3, 4}.

- 101
- 402

Samular.	Mobile phase	Wavelength (nm)	Flow rate (mL	Column
Samples			min ⁻¹)	temperature (°C)
BzOH	$MeOH/H_2O = 7/3$	215	0.8	25
BzH	$MeOH/H_2O = 9/1$	250	0.8	25

Table S1 UPLC analysis methods for BzOH and BzH.

465 Table S2 The atomic percent of C, N and O in *Enteromorpha*, ESAB-600, ESAB-700, ESAB-466 800 and ESAB-900.

Sample	C (at%)	N (at%)	O (at%)	C/O ratio
Enteromorpha	64.91	7.56	29.53	2.20
ESAB-600	85.01	6.75	8.98	9.47
ESAB-700	86.09	6.29	9.82	8.77
ESAB-800	87.11	6.61	9.47	9.20
ESAB-900	88.56	3.72	8.34	10.62

Table S3 Surface properties of the as-prepared catalysts.

	Course los	BET surface area	Total pore volume	Average pore diameter
	Samples	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)
	ESAB-600	104	0.20	7.926
	ESAB-700	100	0.19	7.995
	ESAB-800	171	0.21	7.514
	ESAB-900	189	0.22	7.081
-				

476 **References**

- 477 1. Y. N. Shang, X. Xu, Z. H. Wang, B. Jin, R. Wang, Z. F. Ren, B. Y. Gao and Q. Y. Yue,
- 478 Acs Sustainable Chemistry & Engineering, 2018, **6**, 6920-6931.
- 479 2. C. Chen, T. F. Ma, Y. N. Shang, B. Y. Gao, B. Jin, H. B. Dan, Q. Li, Q. Y. Yue, Y. W. Li,
- 480 Y. Wang and X. Xu, *Applied Catalysis B-Environmental*, 2019, **250**, 382-395.
- 481 3. C. Li, X. S. Liu, Y. L. Han, Q. Guo, W. B. Yang, Q. Liu, B. Song, X. L. Zheng and S. Y.
- 482 Tao, *Cell Reports Physical Science*, 2021, **2**.
- 483 4. H. Dan, Y. Gao, L. Feng, W. Yin, X. Xu, B. Gao and Q. Yue, *Journal of Hazardous*
- 484 *Materials*, 2023, **445**, 130469.