Supporting Information

Controlled charge injection into nitrogen for efficient electrochemical nitrogen reduction based on metal-on-boron compound catalysts

Yunji Han,^{†a,b} Mihyeon Jo,^{†a,b} Hyung-Kyu Lim*^c and Sangheon Lee*^{a,b}

^{a.} Department of Chemical Engineering and Materials Science, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea

^{b.} Graduate Program in System Health Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea

^{c.} Division of Chemical Engineering and Bioengineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea

* Corresponding authors: hklim@kangwon.ac.kr (H.-K.L.), sang@ewha.ac.kr (S.L.)

[†] The two authors are equally contributed.

	α-sheets			β_{12} -sheets		
Model	$\frac{\Delta E_{vib}}{\text{(kcal/mol)}}$	$\begin{array}{c c} \Delta S_{vib} \\ (cal/mol \cdot K) \end{array}$	ΔG_{solv} (kcal/mol)	$\Delta E_{vib} (eV)$	ΔS_{vib}	ΔG_{solv}
*	-	-	-4.93	-	-	-4.99
*N2	6.02	7.21	-2.77	5.55	11.13	-3.30
*N ₂ H	12.78	7.30	-5.54	12.63	9.87	-6.05
N_2H_2	20.35	8.32	-6.16	19.94	11.21	-6.75
*N ₂ H ₃	27.28	8.69	-7.45	27.33	10.73	-9.70
*N ₂ H ₄	33.50	16.66	-7.44	32.76	15.46	-7.34
*NH ₂	16.64	10.49	-6.13	16.69	9.78	-6.25

Table S1. The vibrational and solvation energy quantities for dual Ru doped models.

Table S2. Structural information of catalyst models for DACs. The formation energy of DACs (ΔE_f) is calculated using $\Delta E_f = E_{TMs/Boron} - E_{TMs} - E_{Boron}$, where, $E_{TMs/Boron}$, E_{TMs} , and E_{Boron} represent the energy of the metal-embedded boron sheet, the bulk metal, and the boron sheet, respectively. Distances between the active site and the boron sheet, as well as between two TMs, are listed as d_{M-B} and d_{M-M} , respectively. Cd and Zn adsorbed on α -sheets do not exhibit stable binding states.

TMs		a-sheets		β ₁₂ -sheets		
11015	$\Delta E_{\rm f}({\rm eV})$	$d_{\text{M-B}}(\text{\AA})$	$d_{\mathrm{M-M}}(\mathrm{\AA})$	$\Delta E_{\rm f}({\rm eV})$	$d_{\text{M-B}}(\text{\AA})$	$d_{\text{M-M}}(\text{\AA})$
Ag	1.138	2.452	5.132	0.558	2.548	2.913
Cd	-	-	-	0.149	2.751	2.840
Со	0.504	1.845	5.132	0.031	1.907	2.948
Cr	1.721	2.246	5.131	0.845	2.287	2.883
Cu	0.917	2.088	5.132	0.368	2.182	2.676
Fe	0.945	1.988	5.133	0.470	2.046	2.834
Mn	0.954	2.044	5.132	0.037	2.160	2.917
Мо	2.439	2.125	5.132	1.369	2.188	2.294
Nb	2.192	2.183	5.131	0.679	2.168	2.878
Ni	0.399	1.922	5.132	0.382	2.099	2.525
Pd	0.598	2.287	5.132	0.179	2.335	2.800
Rh	0.979	2.198	5.131	0.693	2.198	2.749
Ru	1.837	2.148	5.139	1.402	2.165	2.526
Tc	2.164	2.118	5.132	1.368	2.144	2.527
Ti	1.510	2.138	5.131	-0.301	2.141	2.918
V	1.734	2.083	5.133	0.146	2.043	2.923
Zn	-	-	-	0.241	2.338	2.670
Zr	1.790	2.284	5.128	-0.163	2.273	3.056

Table S3. The formation energy of SACs on CeO₂ (111), α -sheet, β_{12} -sheet. The formation energy of SACs (ΔE_f) is calculated using $\Delta E_f = E_{TM/Substrate} - E_{TM} - E_{Substrate}$, where, $E_{TM/Substrate}$, E_{TM} , and $E_{Subsrate}$ represent the energy of the metal-embedded substrate, the bulk metal, and the substrate, respectively. (unit: eV)

ΔE_{f}	CeO ₂	α-sheets	β_{12} -sheets
Pd	1.523	0.530	0.255
Pt	1.158	0.388	0.018
Ru	4.340	1.769	1.498

TMs	α-sheets	β_{12} -sheets
Cr	4.557	2.640
Mn	4.570	2.725
Mo	4.542	2.697
Nb	4.660	2.875
Ni	4.468	-
Rh	4.527	2.841
Ru	4.452	-
Tc	4.406	2.641
Ti	4.629	2.822
V	4.543	2.700
Zr	4.752	3.009

Table S4. Metal-metal distances (d_{M-M}) of side-on N₂ adsorption structures with negative binding free energy. (unit: Å)

TMs	α-sheets	β ₁₂ -sheets
Ag	0.228	0.261
Cd	-	0.345
Со	-0.098	0.129
Cr	0.700	0.692
Cu	0.285	0.294
Fe	0.387	0.511
Mn	0.561	0.692
Mo	0.568	0.510
Nb	0.944	0.985
Ni	0.224	0.219
Pd	-0.046	-0.042
Rh	-0.084	-0.030
Ru	0.198	0.231
Tc	0.254	0.284
Ti	1.096	0.945
V	0.898	0.805
Zn	-	0.444
Zr	1.194	1.039

Table S5. Average partial charge values at each TMs of bare catalyst based on the Bader charge analysis. (unit: |e|)

T) / ~	α-sh	leets	β ₁₂ -s	β_{12} -sheets	
1 IVIS	@TMs	@N	@TMs	@N	
Ag	0.365	-0.134	0.333	-0.042	
Cd	-	-	0.595	-0.128	
Co	0.377	-0.170	0.349	-0.111	
Cr	0.949	-0.378	1.000	-0.386	
Cu	0.387	-0.074	0.370	-0.049	
Fe	0.445	-0.144	0.411	-0.096	
Mn	0.776	-0.285	0.908	-0.334	
Mo	0.856	-0.389	0.962	-0.428	
Nb	1.305	-0.458	1.585	-0.516	
Ni	0.189	-0.107	0.336	-0.133	
Pd	0.156	-0.155	0.122	-0.076	
Rh	0.137	-0.217	0.239	-0.224	
Ru	0.313	-0.304	0.319	-0.235	
Tc	0.545	-0.386	0.648	-0.399	
Ti	1.314	-0.470	1.353	-0.411	
V	1.126	-0.393	1.207	-0.416	
Zn	-	-	0.684	-0.171	
Zr	1.615	-0.637	1.672	-0.500	

Table S6. Average partial charge values at each TMs and average partial charge values of N for N_2 adsorbed catalyst based on the Bader analysis method. (unit: |e|)

	Partial char	ge @ N (e)	ΔG_{N2}	$_{2}(eV)$	ICOHP	$\partial E_{\rm F}({\rm eV})$
TMs	α	β_{12}	α	β_{12}	α	β_{12}
Ag	-0.134	-0.042	0.54	0.47	-2.00	-1.61
Cd		-0.128		0.79		-1.08
Co	-0.170	-0.111	0.28	0.99	-3.18	-2.83
Cr	-0.378	-0.386	-0.55	-0.73	-2.82	-2.43
Cu	-0.074	-0.049	0.26	0.14	-2.23	-2.16
Fe	-0.144	-0.096	0.07	-0.44	-2.65	-2.61
Mn	-0.285	-0.334	-0.24	-0.08	-2.27	-1.83
Mo	-0.389	-0.428	-1.05	-0.91	-3.22	-2.77
Nb	-0.458	-0.516	-1.12	-1.30	-3.83	-2.79
Ni	-0.107	-0.133	-0.10	-0.16	-2.55	-2.56
Pd	-0.155	-0.076	0.13	0.22	-1.94	-2.19
Rh	-0.217	-0.224	-0.28	-0.13	-2.36	-2.34
Ru	-0.304	-0.235	-0.28	-0.36	-2.89	-2.05
Tc	-0.386	-0.399	-1.23	-0.81	-3.43	-3.24
Ti	-0.470	-0.411	-1.41	-1.49	-3.02	-2.02
V	-0.393	-0.416	-1.00	-0.77	-2.86	-2.26
Zn		-0.171		0.44		-1.63
Zr	-0.637	-0.500	-1.74	-1.56	-4.12	-2.60

Table S7. Average partial charge values of N_2 molecule adsorbed on DACs , corresponding N_2 adsorption free energies, and COHP-calculated metal- N_2 binding strength (denoted as ICOHP@E_F).

	$\Delta q (d)$	Δq @ TM		Ŋ N
	α	β_{12}	α	β_{12}
Ag	0.137	0.072	-0.134	-0.042
		0.250		-0.128
Co	0.475	0.220	-0.170	-0.111
Cr	0.249	0.308	-0.378	-0.386
Cu	0.102	0.076	-0.074	-0.049
Fe	0.058	-0.100	-0.144	-0.096
Mn	0.215	0.216	-0.285	-0.334
Mo	0.288	0.452	-0.389	-0.428
Nb	0.361	0.600	-0.458	-0.516
Ni	-0.035	0.117	-0.107	-0.133
Pd	0.202	0.164	-0.155	-0.076
Rh	0.221	0.269	-0.217	-0.224
Ru	0.115	0.088	-0.304	-0.235
Tc	0.291	0.364	-0.386	-0.399
Ti	0.218	0.408	-0.470	-0.411
V	0.228	0.402	-0.393	-0.416
		0.240		-0.171
Zr	0.421	0.633	-0.637	-0.500

Table S8. Differences (denoted as $\Delta q @$ TM) in the average partial charge value at each TM after and before the N₂ adsorption. Average partial charge values (denoted as q @ N) of N for N₂ adsorbed catalyst. Calculations are based on the Bader analysis method. (unit: |e|)

	q @ TM		ΔG_{H2O}		
	α	β ₁₂	α	β ₁₂	
Ag	0.228	0.261	0.294	0.681	
Cd		0.345		0.293	
Co	-0.098	0.129	0.154	0.005	
Cr	0.700	0.692	0.044	-0.054	
Cu	0.285	0.294	0.224	-0.002	
Fe	0.387	0.511	0.147	-0.160	
Mn	0.561	0.692	0.009	-0.097	
Mo	0.568	0.51	0.046	0.280	
Nb	0.944	0.985	-0.621	-0.161	
Ni	0.224	0.219	0.178	0.050	
Pd	-0.046	-0.042	0.402	0.055	
Rh	-0.084	-0.03	0.320	0.121	
Ru	0.198	0.231	0.242	0.146	
Tc	0.254	0.284	0.260	0.137	
Ti	1.096	0.945	-0.782	-0.417	
V	0.898	0.805	-0.364	-0.021	
Zn		0.444		0.048	
Zr	1.194	1.039	-1.252	-0.261	

Table S9. Average partial charge value (unit: |e|) at each TM (denoted as q @ TM) on bare α - and β_{12} -sheets and calculated H₂O adsorption free energies (denoted as ΔG_{H2O}) (unit: eV).

Figures S1. Structural changes of TMs on α -sheet after side-on N₂ adsorption.

Figures S2. Partial density of states (pDOS) analysis of N_2 and TMs on α -sheets for the most stable N_2 adsorption structures (see Figure 1).

Figures S3. Partial density of states (pDOS) analysis of N_2 and TMs on β_{12} -sheets for the most stable N_2 adsorption structures (see Figure 1).

Figures S4. Crystal orbital Hamiltonian projection (COHP) analysis of TM-N₂ bonding on α -sheets for the most stable N₂ adsorption structures (see Figure 1). Solid and dot lines denote spinup and spin-down states, respectively.

Figures S5. Crystal orbital Hamiltonian projection (COHP) analysis of TM-N₂ bonding on β_{12} -sheets for the most stable N₂ adsorption structures (see Figure 1). Solid and dot lines denote spinup and spin-down states, respectively.

Figures S6. Calculated H₂O adsorption free energies as a function of the partial charge at TM on α -sheets (denoted as α) and β_{12} -sheets (denoted as β). Calculations of the partial charge are based on the Bader analysis method. Refer to raw data in Table S9.

Figures S7. Correlation between differences (denoted as $\Delta q @$ TM) in the average partial charge value at each TM after and before the N₂ adsorption and average partial charge values (denoted as q @ N) of N for N₂ adsorbed catalyst. Calculations are based on the Bader analysis method. Refer to raw data in **Table S8**. (unit: |e|)

Figure S8. Correlation between TMs 1^{st} electron ionization energy (source: https://ptable.com) and N_2 binding energy.

Figure S9. Linear correlations between binding free energies of N_2 and N_2H , N_2H_2 , N_2H_3 , N_2H_4 , N_2H_5 for TMs on α -sheet.

Figure S10. Linear correlations between binding free energies of N_2 and N_2H , N_2H_2 , N_2H_3 , N_2H_4 , N_2H_5 for TMs on β_{12} -sheet.

Figure S11. Conventional reaction pathways for eNRR.

Figure S12. Gibbs free energy profiles for overall eNRR pathway on TMs@α-sheet.

Figure S13. Gibbs free energy profiles for overall eNRR pathway on TMs@ β_{12} -sheet.