Computational Screening of Two-Dimensional Conductive Metal-Organic Frameworks as Electrocatalysts for Nitric Oxide Reduction Reaction

Man Qiao,^{*a} Ye Yue,^b Jiachi Xie^a and Dongdong Zhu^{*a}

^a School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing 210044, China. E-mail: dd.zhu@nuist.edu.cn, qiaoman@nuist.edu.cn

^b Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China

M=	Lattice (Å)	$D_{\mathrm{M-M}}(\mathrm{\AA})$	$D_{\text{M-O}}(\text{\AA})$	$E_{\rm form}({\rm eV})$	$U_{\rm diss}({ m eV})$
Sc	13.93	6.99	2.05	-6.55	0.10
Ti	13.52	6.77	1.91	-5.21	0.98
V	13.46	6.73	1.88	-3.98	0.81
Cr	13.34	6.69	1.94	-3.95	1.07
Mn	13.16	6.58	1.88	-4.33	0.98
Fe	13.06	6.53	1.86	-2.17	0.63
Co	12.94	6.47	1.83	-2.18	0.81
Ni	12.88	6.44	1.83	-2.31	0.90
Cu	13.21	6.60	1.95	-1.81	1.25
Y	14.40	7.19	2.17	-6.49	-0.21
Zr	14.05	7.02	2.04	-5.39	-0.1
Nb	13.85	6.92	1.98	-4.07	0.26
Mo	13.77	6.89	1.98	-2.56	0.65
Ru	13.54	6.77	1.96	-1.46	1.19
Rh	13.46	6.73	1.98	-1.55	1.37
Pd	13.41	6.70	1.99	-1.59	1.74
Ag	14.50	7.26	2.27	-0.73	1.53
Hf	13.95	6.97	2.03	-5.08	-0.28
Та	13.8	6.90	1.97	-3.97	0.72
W	13.8	6.90	1.97	-1.45	0.58
Re	13.8	6.90	1.99	-0.60	0.50
Os	13.64	6.82	1.95	-0.69	0.93
Ir	13.59	6.79	1.98	-0.73	1.40
Pt	13.52	6.76	1.98	-1.19	1.77
Au	13.45	6.73	1.99	0.06	1.48

Table S1. Structural parameters, formation energy and the dissolution energy of $TM_3(C_6O_6)$.

Table S2. The Gibbs free energies of NO (ΔG_{*NO}), N₂ molecule (ΔG_{*N2}), and NH₃ molecule (ΔG_{*NH3}) on TM₃(C₆O₆)₂.

M=	$\Delta G_{\rm ad} ({ m NO}) ({ m eV})$	$\Delta G_{\mathrm{ad}}\left(\mathrm{N}_{2} ight)\left(\mathrm{eV} ight)$	ΔG_{ad} (NH ₃) (eV)
Ti	-0.38	0.08	-0.50
V	-1.35	0.29	-0.75
Cr	-1.61	0.02	-1.30
Mn	-0.70	0.47	-0.66
Fe	-1.19	0.46	-0.75
Co	-1.01	0.23	-0.97
Nb	-4.69	-0.57	-0.60
Mo	-2.65	-0.47	-1.59
Ru	-2.06	-0.29	-1.14
Rh	-1.45	0.4	-1.13
W	-3.01	0.49	-1.46
Re	-2.60	-0.21	-1.18
Os	-2.24	-0.06	-0.95
Ir	-1.47	0.52	-1.19

Table S3. The Gibbs free energies (ΔG_{*NO}), N-O bond, N-N bond and transfer charge of TM atoms of adsorbed NO on TM₃(C₆O₆)₂

M=	$\Delta G_{\rm ad}$ (NO) (eV)	$L_{\text{N-O}}$ (Å)	$D_{\mathrm{M-N}}(\mathrm{\AA})$	Charge (e)
V	-1.35	1.22	1.69	0.42
Cr	-1.61	1.19	1.66	0.26
Mn	-0.70	1.19	1.63	0.23
Fe	-1.19	1.18	1.64	0.11
Co	-1.01	1.17	1.65	0.13
Nb	-4.69	1.26	1.82	0.56
Mo	-2.65	1.22	1.74	0.53
Ru	-2.06	1.18	1.71	0.28
Rh	-1.45	1.18	1.93	0.12
W	-3.01	1.23	1.75	0.57
Re	-2.60	1.20	1.73	0.46
Os	-2.24	1.19	1.72	0.26
Ir	-1.47	1.19	1.94	0.16

Table S4. Elementary steps for the considered pathways of NO-to- NH_3 conversion on nine $TM_3(C_6O_6)_2$.

$\frac{\Delta G(eV)}{2}$	V	Mn	Fe	M	
*NO + H^+ +e ⁻ \rightarrow *NOH	0.49	0.60	0.80	/	0.2
*NO + H ⁺ +e ⁻ \rightarrow *NHO	0.20	0.02	0.28	0.0	0.6
*NOH + H ⁺ +e ⁻ \rightarrow *N + H ₂ O	-1.15	-1.12	-0.45	/	-1.5
*NOH + H ⁺ +e ⁻ \rightarrow *NHOH	-0.55	-0.13	-0.35	/	-0.1
*NHO + H ⁺ +e ⁻ \rightarrow *NHOH	-0.26	0.46	0.18	0.0	4 -0.5
*NHO + H ⁺ +e ⁻ \rightarrow *NH ₂ O	0.28	-0.10	0.07	-0.]	[9 -1.(
$*N + H^+ + e^- \rightarrow *NH$	-0.88	-0.02	-0.54	-0.6	58 -0.2
*NHOH + H ⁺ + $e^- \rightarrow *NH_2OH$	0.08	-1.24	-0.84	-1.(0.2
*NHOH + H ⁺ +e ⁻ \rightarrow *NH + H ₂ O	-1.47	-1.01	-0.65	0.3	6 -1.8
$*NH_2O + H^+ + e^- \rightarrow *NH_2OH$	-0.46	-0.68	-0.72	-0.8	33 0.7
$*NH + H^+ + e^- \rightarrow *NH_2$	-0.73	-1.40	-1.46	-2.0	03 -0.3
$*\mathrm{NH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow *\mathrm{NH}_{2} + \mathrm{H}_{2}\mathrm{O}$	-2.28	-1.16	-1.27	-0.6	52 -2.3
$*NH_2 + H^+ + e^- \rightarrow *NH_3$	-0.61	-1.50	-1.37	-1.8	30 -0.3
$*NH_3 \rightarrow * + NH_3$	0.73	0.64	0.73	0.9	5 1.5
$* + H^+ + e^- \rightarrow *H$	0.47	0.70	0.71	0.1	7 -0.3
$\Delta G (eV)$	R	lh '	W	Ir	Co
$*NO + H^+ + e^- \rightarrow *NOH$	0.	65 0	.72 0	.07	/
$*NO + H^+ + e^- \rightarrow *NHO$	0.	23 0	.26 0	.58	0.02
$*NOH + H^+ + e^- \rightarrow *N + H_2O$	-1.	.36 2	.08 -1	.34	/
$*NOH + H^+ + e^- \rightarrow *NHOH$	-0.	.29 -0	0.51 0	.05	/
*NHO + H ⁺ +e ⁻ \rightarrow *NHOH	0.	13 -0	0.05 -0).45	0.19
$*NHO + H^+ + e^- \rightarrow *NH_2O$	0.	63 -0	.22 -1	.05	0.20
$*N + H^+ + e^- \rightarrow *NH$	0.	40 -3	.01 -0).79	/
*NHOH + H ⁺ + $e^- \rightarrow *NH_2OH$	I -0.	.49 -0	.91 0	.68	-1.00
*NHOH + H ⁺ + $e^- \rightarrow$ *NH + H ₂	O -0.	.68 -0	.42 -2	2.18	/
$*NH_2O + H^+ + e^- \rightarrow *NH_2OH$.99 -0	.74 1	.28	-1.02
$*NH + H^+ + e^- \rightarrow *NH_2$	-1.	.18 -1	.14 -().15	/
$*NH_2OH + H^+ + e^- \rightarrow *NH_2 + H$	₂ O -1.	.37 -0	.66 -3	3.00	-0.90
$*NH_2 + H^+ + e^- \rightarrow *NH_3$	-1	.06 -1	.79 0	.28	-1.49
$*NH_3 \rightarrow * + NH_3$		12 1	.11 1	.44	1.17

Reaction pathway Fig. S1. The free energy diagram of NO reduction to NH_3 on $V_3(C_6O_6)_2$.

Fig. S2. The free energy diagram of NO reduction to NH_3 on $Mn_3(C_6O_6)_2$.

Fig. S3. The free energy diagram of NO reduction to NH_3 on $Mn_3(C_6O_6)_2$.

Fig. S4. The free energy diagram of NO reduction to NH_3 on $Co_3(C_6O_6)_2$.

Fig. S5. The free energy diagram of NO reduction to NH_3 on $Mo_3(C_6O_6)_2$.

Fig. S6. The free energy diagram of NO reduction to NH_3 on $Mo_3(C_6O_6)_2$.

Fig. S7. The free energy diagram of NO reduction to NH_3 on $Rh_3(C_6O_6)_2$.

Fig. S8. The free energy diagram of NO reduction to NH_3 on $W_3(C_6O_6)_2$.

Fig. S9. The free energy diagram of NO reduction to NH_3 on $Ir_3(C_6O_6)_2$.

Fig. S10. Optimized intermediates of the NORR via different pathways on $V_3(C_6O_6)_2$.

Fig. S11. Optimized intermediates of the NORR via different pathways on $Mn_3(C_6O_6)_2$.

Fig. S12. Optimized intermediates of the NORR via different pathways on $Mn_3(C_6O_6)_2$.

Fig. S13. Optimized intermediates of the NORR via different pathways on $Co_3(C_6O_6)_2$.

Fig. S14. Optimized intermediates of the NORR via different pathways on $Mo_3(C_6O_6)_2$.

Fig. S15. Optimized intermediates of the NORR via different pathways on $Ru_3(C_6O_6)_2$.

Fig. S16. Optimized intermediates of the NORR via different pathways on $Rh_3(C_6O_6)_2$.

Fig. S17. Optimized intermediates of the NORR via different pathways on $W_3(C_6O_6)_2$.

Fig. S18. Optimized intermediates of the NORR via different pathways on $Ir_3(C_6O_6)_2$.

Fig. S19. The free energy diagram of NO reduction to N_2O and N_2 on $V_3(C_6O_6)_2$.

Fig. S20. The free energy diagram of NO reduction to N_2O on $Mn_3(C_6O_6)_2$.

Fig. S21. The free energy diagram of NO reduction to N_2O on $Fe_3(C_6O_6)_2$.

Fig. S22. The free energy diagram of NO reduction to N_2O on $Co_3(C_6O_6)_2$.

Fig. S23. The free energy diagram of NO reduction to N_2 on $Mo_3(C_6O_6)_2$.

Fig. S24. The free energy diagram of NO reduction to N_2O on $Ru_3(C_6O_6)_2$.

Fig. S25. The free energy diagram of NO reduction to N_2O on $Rh_3(C_6O_6)_2$.

Fig. S26. The free energy diagram of NO reduction to N_2 on $W_3(C_6O_6)_2$.

Fig. S27. The free energy diagram of NO reduction to N_2O on $Ir_3(C_6O_6)_2$.

Fig. S28. Kinetic barriers and corresponding atomic structures of the potential limiting step along the most favorable reaction pathways for $Mo_3(C_6O_6)_2$.