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General Information

Materials

Materials required for the synthesis of ligands such as 1,3,5-trithiane (>99%) bought from TCI 

(India) and used without further purification. We purchased CuI (>99%) from Loba Chemie 

Pvt. Ltd. and acetonitrile HPLC grade from Finar Chemicals Pvt. Ltd. 

Characterization:

Single crystal measurements of CuI-CP were conducted using a suitable crystal on 

a SuperNova diffractometer. The diffraction data were collected at ambient temperature at 298 

K utilizing Mo Kα radiation that was monochromatized with graphite (λ = 0.7107 Å) at 50 kV 

and 30 mA. Using Olex2[1], the structure was solved with the SHELXT structure solution 

program using Intrinsic Phasing and refined with the SHELXL refinement package using Least 

Squares minimization.[1,2] 

Experimental Section

Electrode Fabrication for Electrochemical Analysis

Initially, slurries were prepared using ultrasonication to disperse 10 mg of electrode materials 

in 1 mL of ethanol for 2 hours. At the same time, sections of carbon paper (CP) measuring 2x1 

cm2 were cut and thoroughly cleaned for subsequent use. Subsequently, the as-prepared slurry 

was evenly dropcasted on 1x1 cm of carbon paper and dried in a vacuum for 4 hours. For all 

electrochemical tests, a 1 M potassium hydroxide (KOH) electrolyte solution was used.

Electrochemical studies 

Charge storage study: Electrochemical studies were performed using a NOVA software-

controlled Autolab PGSTAT 204N. The reference electrode employed was Ag/AgCl, the 

counter electrode was made of platinum, and the working electrode consisted of carbon paper 
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coated with the electrode material. The experiments included cyclic voltammetry (CV) at 

various scan rates and galvanostatic charge/discharge (GCD) at different current densities using 

an electrochemical workstation. Electrochemical impedance spectroscopy (EIS) was also 

carried out with a 10 mV AC amplitude over a frequency range spanning from 10 mHz to 100 

kHz. The following equation was used to determine the specific capacity using the GCD 

discharge curve. 

                                                   (1)
                                                                𝐶 =  

𝐼 Δ𝑡
𝑚 

where I is the current,  is the discharge time, and m is the mass of the coated active material.Δ𝑡

Fabricating symmetrical solid-state device: 

A Swagelok cell having a 16 mm diameter was utilized for fabricating a solid-state symmetrical 

charge storage device. An electrode slurry was synthesized by subjecting 10 mg of electrode 

materials to sonication in a 1 mL ethanol solution for a period of 2 h. This resulting slurry was 

then dropcasted to a circular Ni-foam substrate and subsequently placed in an oven at 60 °C 

for 8 h to ensure proper drying. The electrolyte solution was prepared in 1g of PVA in 10 mL 

water. This mixture was then heated at 90 °C with continuous stirring for 3 h, to which 10 mL 

of a 1M KOH solution was added. Following this step, cellulose paper as a separator was 

soaked into the resulting PVA-KOH gel electrolyte. Subsequently, the separator was 

sandwiched by two electrode material-coated Ni-foam and assembled in a Swagelok cell to 

fabricate a symmetrical supercapacitor device.

From the GCD curves, the following equations were used to derive the fabricated device's 

specific capacity, energy density (E), and power density (P). 

                                                                                           (2)
            𝐶 =  

2𝐼 Δ𝑡
𝑚 
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                     𝐸(𝑊ℎ

𝑘𝑔 ) =
0.5 × 𝐶Δ𝑉

3.6
                                           (3)

                                 
                        𝑃(𝑊

𝑘𝑔) =
3600 ×  𝐸

Δ𝑡
                                      (4)

active material mass (g), discharge time (s), current (A), potential window (V), and specific 

capacity (C g-1).

Theoretical Capacity:-  We have calculated the  theoretical specific capacity using:- 

Capacity, C = nF/M

Where n is the number of electron transfers, 

F is Faraday Constant,

M is Molar mass,

For one formula unit of CH₂CuIS, the formula weight is 236.53 g/mol. Considering CuI-CP 

undergoes a two-electron transfer, the calculated specific capacity is 815 C g⁻¹.

Table S1. Crystallographic parameters of CuI-CP

Compound  CuI-CP                                    
CCDC No. 2289195
Formula CH2CuIS
Formula Weight                 236.53
Wavelength   0.71073 Å                           
Crystal System                 trigonal
Space group                        R3
a/Å                                   7.2224(3)
b/ Å                                 7.2224(3)
c/ Å                                  20.6643(11)
α /°                                         90
β/°                                     90
γ/°                                          120
V/ Å3                                 933.50(9)
Z 9
Ƿcalcd (g/cm3)                       3.787
Temperature/K                  298                                   
GOF 1.101                                   
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Table S2. Important bond lengths (Å).

I1-Cu11            2.655(2)
I1-Cu1            2.655(2)
I1-Cu12            2.655(2)
I2-Cu13            2.601(2)
I2-Cu14            2.601(2)
I2-Cu1            2.601(2)
I3-Cu15            2.719(2)
I3-Cu1            2.719(2)
I3-Cu16            2.719(2)
Cu1-S1            2.306(4)
S1-C13           1.816(16)
S1-C1           1.819(16)
C1-S14           1.816(16)

Symmetry operation code- 12-y,1+x-y,+y;  21+y-x,2-x,+z;  31-y,1+x-y,+z;  4+y-x,1-x,+z;  
51+y-x,1-x,+z;  61-y,+x-y,+z

 

Table S3. Selected bond angles (˚).

Cu11-I1-Cu1             110.34(6)

2θ range for 
data collection               

6.806 to 54.946

Reflections collected          2329                                    
Independent
 reflections                  

926 [Rint =  0.062 ]

Completeness to 
θ=25.242                            

99.6                                        

Final R indices
[I>2σ(I)]               

R1 =  0.0413 , wR2 =  
0.1091

Final R indices
[all data]              

R1 =  0.0417 , wR2 =  
0.1095

Largest diff. 
peak/hole/ e Å-3                       

1.17/-1.21        
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Cu11-I1-Cu12             110.35(6)
Cu1-I1-Cu12             110.34(6)
Cu13-I2-Cu14               85.35(7)
Cu14-I2-Cu1               85.35(7)
Cu13-I2-Cu1               85.35(7)
Cu15-I3-Cu16             119.84(8)
Cu16-I3-Cu1             119.84(8)
Cu15-I3-Cu1             119.84(8)
I1-Cu1-I3             103.98(7)
I2-Cu1-I1             107.58(8)
S1-Cu1-I1             112.93(8)
S1-Cu1-I2             110.91(13)
S1-Cu1-I3             122.18(13)
C13-S1-Cu1               97.97(12)
C1-S1-Cu1             116.70(5)
C13-S1-C1             112.10(6)
S14-C1-S1               98.60(4)

Symmetry operation code- 1 - x, 1 - y, - z; 2 + x, 1 + y, - 1 + z; 3 + x, 1 + y, + z; 4 + x, - 1 + y, 1 
+ z; 5 + x, - 1 + y, + z

Figure. S1 (a) Asymmetric unit of the 2D CuI -CP, (b) different coordination mode of Cu 

and I ions in chain propagation.
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Figure S2. Crystal structure arrangement of CuI-CP with different layers.

Figure S3. (a) The space fill model of CuI-CP along the a-axis, (b) space fill model along 
the b-axis.
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Figure S4. Continuous Cu-I 2D sheet framework in (a) ellipsoid and (b) space-filled model.

Figure S5.  IR spectra of ligand and CuI-CP.
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Figure S6. TGA curve of CuI-CP.

Figure S7. BET isotherm of CuI-CP using N2 adsorption/desorption method .
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Figure S8. Porosity distribution by BJH method of CuI-CP.

Figure S9. (a) XPS spectrum of C1s and (b) XPS spectrum of S2p.

Figure S10. Electrical conductivity of CuI-CP.
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        Figure S11. (a-b) . CV and GCD of CuI-CP in negative potential at 10 mVs-1 and 1 Ag-

1 respectively.

Figure S12. (a-b)  CV and GCD of CuI-CP in positive potential at 10 mVs-1 and 1 Ag-1 
respectively.
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Figure S13.  Charge storage kinetics: ln i vs. ln ν plots of CuI-CP. The slope of each plot 
represents the value of b.

Figure S14.  Comparison of calculated CV profile of CuI-CP for diffusion-only 
capacity and overall experimental at 10 mVs-1 and 50 mVs-1.



S14

Figure S15.  FT-IR of as-synthesized CuI-CP, charged state CuI-CP and discharged state 
CuI-CP.
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Figure S16 (a,b)   EDS and elemental mapping of  CuI-CP after cyclic stability. 
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Table S4. Comparison table for efficiency in devices.

Metal complex Electrolyte
Ed 

(Wh 
Kg-1)

Pd  
(W 

Kg-1)

Voltage 
range 

(V)

Specific 
capacity
/capacita

nce

Cycling 
stability Ref.

Ni-MOF 6M KOH 90.3 1180 0-2
833.2 C 

g-1

@ 1 A g-1

82%, 
10000 
cycles

[3]

Zn-MOF 6M KOH 83.0 1180 0-2
828.3 C 

g-1

@ 1 A g-1

82%, 
10000 
cycles

[3]

Ni-MOF 2M KOH 50.1 2550 0-2

2.38 C 
cm−2 at 
1 mA 
cm−2

88%, 
10000 
cycles

[4]

Ni-MOF 6M KOH 57.1 800 0-2
1036 F g-

1

@ 1 A g-1

76%, 
5000 

cycles at 
10 A g-1

[5]

Ni-MOF 6M KOH 30.7 388.5 0-1.4 840 F g-1

@ 2 A g-1

84%, 
7000 
cycles

[6]

Ni2[CuPc(NH)8]
1 M 

Na2SO4 51.6 32100 0-1.8
400 F g-1

@ 0.5 A 
g-1

90.3 %, 
5000 
cycles

[7]

(Cu-TBC) 0.1M 
H2SO4

18.89 6000 0-0.6

474.8 F 
g-1

@ 0.2 A 
g-1

83%, 
5000 

cycles at 
5 A g-1

[8]

Ni2[CuPcS8]
1 M 

TEABF4/ac
etonitrile

57.4 23300 0-2.5
312 F g-1

@ 0.5 A 
g-1

96.1%, 
5000 
cycles

[9]

Cu(I)CN- MOF 6M KOH 62.9 1100 0-2
266.5 C 

g-1

@ 1 A g-1

81.1%, 
5000 
cycles

[10]

CuI -CP 1M KOH 77 3080 0-1 498 C g-1

@ 1 A g-1

93.8 %, 
10000 
cycles

This 
work
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