Supplementary Information for "Formation of Intrinsic Point Defects in AlN: a study of donor and acceptor characteristics using hybrid QM/MM techniques"

Lei Zhu ^{a b}, Xingfan Zhang ^a, Qing Hou ^{c d}, You Lu ^e, Thomas W. Keal ^e, John Buckeridge ^f, C. Richard A. Catlow ^{a g *}, and Alexey A. Sokol ^{a *}

^a Department of Chemistry, University College London, London, WC1H 0AJ, United Kingdom.

^b Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.

^c School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China

^d Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, China

° STFC Scientific Computing, Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom

^f School of Engineering, London South Bank University, London, SE1 6NG, United Kingdom

^g School of Chemistry, Cardiff University, Park Place, Cardiff CF10 1AT, United Kingdom

* c.r.a.catlow@ucl.ac.uk; a.sokol@ucl.ac.uk

Figure S1 The schematic diagram of embedded QM/MM cluster in Chemshell.

Table S1 Structural data (Å) after geometry optimisation calculated by Chemshell using four different hybrid functionals (PBE0, B97-2, and BB1K), compared with other DFT results, MM results, and experimental measurements in 300K and 90K. d is the bond length. (One should note that the lattice constants a, c and internal structural parameter u here are characteristics of an infinite periodic crystal, so they are only meaningful in comparison of experimental, MM and DFT PBC results. For a small cluster in our Chemshell calculation, these values are measured at the central region, so that we can make sure the cluster is not distorted against the embedded environment.)

	QM/MM (Chemshell)		Previous DFT ¹	Force field ²	Experiment (300K ³ & 90K ⁴)		
Functional	PBE0	B97-2	BB1K	HSE03 (33% HF)			
а	3.148	3.148	3.148	3.107	3.112	3.112	3.115
С	4.976	4.976	4.976	4.974	4.983	4.982	4.988
u	0.385	0.385	0.385	0.382	0.380	0.382	0.379
c/a	1.581	1.581	1.581	1.601	1.601	1.601	1.601
$d_{cluster}^{central}$	1.915	1.915	1.915	1 900	1 89/	1 903	1 803
$d_{cluster}^{\ rim}$	1.906	1.915	1.906	1.900	1.074	1.705	1.095

Defect charge state	Correction Energy (eV)
0	0
-1 & +1	-0.44
-2 & +2	-1.75
-3 & +3	-3.93

Table S2 The Jost correction energies for relaxed defect structures.

Table S3 The formation energies (eV) of V_N^{3+} (when $E_F = 0$) calculated using the Chemshell QM/MM interface compared with previous DFT results. Previous calculated values reported in the literature are directly measured from their corresponding defect formation energy graphs.

DFT functional	Formation energy
B97-2 (our work)	-8.26
PBE0 (our work)	-8.28
BB1K (our work)	-9.28
HSE ¹	-3.02
HSE ⁵	-3.04
HSE ⁶	-3.02
PBE (revised band edges) ⁷	-3.85
PBE (revised band edges) ⁸	-4.45
LDA (revised band edges) ⁹	-2.49
LDA ¹⁰	-2.79

Table S4 The formation energies (eV) of V_{Al}^0 calculated using the Chemshell QM/MM interface compared with previous DFT results. Previous calculated values reported in the literature are directly measured from their corresponding defect formation energy graphs.

	XC Functional	N-rich	Al-rich
QM/MM (Chemshell)	B97-2	6.02	9.32
	PBE0	6.24	9.53
	BB1K	6.94	10.24
	PBE (GGA)	5.93	9.22
	Perdew81 (LDA)	7.56	10.86
Previous calculcations	HSE (32-33% HF) ^{1,5,6,11}	6.87, 6.98, 6.81, 6.90	10.02, 10.12, 10.13
	PBE (GGA, revised band edges) ⁷	7.44	9.66
	PBE (GGA, revised band gap) ⁸	7.14	9.21
	PBE (GGA) ¹²	6.00	N/A
	Perdew81 (LDA) ^{9,13}	8.05, 6.53	10.20

Figure S2 Vacancy (above) and interstitial (below) defect formation energy comparison of B97-2, PBE0, BB1K functionals used in this work. Here x = 0 represent the VBM level. The diagrams start from 1eV below valence band (VB) maximum on the left of the x-axis and ends at 1eV above conduction band (CB) minimum on the right of the x-axis. The slopes of the lines indicate different charge states of the defect.

Table S5 An overview of the defect energy level (eV) at the defect charge transition position with respect to the VBM. Previous calculated values reported in the literature are directly measured from their corresponding graphs. (*The HSE functional used in this report is with 25% exact HF exchange portion and screening parameter of 0.061 1/Å, unlike the rest of the HSEs with 31-33% HF exchange portion and screening parameter remained unaffected.)

			This work				Pre	vious calcı	ulations		
		B97-2	PBE0	BB1K	HSE ¹	HSE ¹¹	HSE⁵	HSE ⁶	HSE ^{(*)14}	GGA ⁸	LDA ⁹
	(+3 + 2	2.49	2.46	2.89	0.87	1.42	0.84	1.01		1.52	0.71
V_N	(+2 +1	2.80	2.88	3.08	1.08	(+3 +1)	1.01	1.17		(+3 +1) (+3 +1)
	(+1 0)	6.00	6.02	6.51	4.60	4.65	4.44	4.61		4.22	5.05
	(-2 -3)	4.00	4.16	4.49	3.20	2.85	3.14	3.09		1.77	1.34
V_{Al}	(-1 -2)	3.64	3.81	4.23	2.96	2.48	2.88	2.64		1.08	1.13
	(0 -1)	3.32	3.40	3.78	2.54	2.15	2.42	2.38		0.92	0.83
	(-1 0)	4.21	4.33	4.67	2.82	2.70			3.07		
N _{i-split}	(0 + 1)	3.68	3.79	4.27	2.16	2.12			2.69		
	(+1 +2	2.24	2.32	2.79	0.94	1.88			0.70		
	(+2 +3	1.83	1.88	2.36		1.17					
	(0 -1)	4.11	4.13	4.50							
N_{i-oct}	(-1 -2)	4.49	4.53	4.94							
	(-2 -3)	4.99	5.16	4.44							
A1	(+3 + 1	5.21	5.36	5.97	3.92						
Αι	(+1 0)	6.64	6.70	7.19	5.82						
N _{Al, A} (-	- 2 - 1)	4.21	4.26	4.52							
$N_{Al,A}$ (-1 0)	3.97	4.03	4.31	3.63	2.69					
$N_{Al, B}$ ((-1 0)	4.05	4.35	4.79	(-2 0)	3.68					
$N_{Al,A}$ (0 + 1)	2.97	3.13	3.63	2.20						
$N_{Al, B}$ (0 + 1)	4.01	4.12	4.63	2.30	2.01					
N _{Al, A} (+	- 1 + 2)	2.26	2.38	2.90	1 00	(0 +2)					
N _{Al, B} (-	+1 +2)	2.98	3.01	3.42	1.99						
N _{Al, A} (+	- 2 + 3)	2.20	2.32	2.72		0.40					
N _{Al, B} (-	+ 2 + 3)	2.55	2.65	3.01		0.40					

Figure S3 The lowest defect formation energies of three N interstitial types with respect to Fermi level energies are calculated using B97-2, PBE0, and BB1K functionals.

Note S1: Calculating diffuse state of defect

Apart from the "compact" states of defects, in dielectrics, any charged defect can trap one or more electrons or holes in "diffuse" atom-like states of large effective radius. Such states of a charged defects can be modelled computationally using the effective mass theory¹⁵, where an electron (or a hole) can be effectively represented by an atomic (e.g., hydrogenic) state centred on the compact charged defect. In the context of current defect calculations using the QM/MM embedded cluster approach, this approach was first realised by Buckeridge et al¹⁶. The "attaching energies", a term describing electrons and holes attached to compact defects in different charge states, can be calculated using the formulae below:

$$\begin{split} E_{H} &= -\frac{m^{*}}{2\varepsilon^{2}}Z^{2} & \text{for } 1e \text{ or } 1h \text{ (Hydrogen type)}, \\ E_{Hydride} &= \frac{m^{*}}{\varepsilon^{2}}(I_{H} - A_{H}) & \text{for } 2e \text{ or } 2h \text{ (Hydride type)}, \\ E_{He} &= \frac{m^{*}}{\varepsilon^{2}}I_{He}^{2nd} & \text{for } 1e \text{ or } 1h \text{ (Helium type)}, \\ E_{He} &= \frac{m^{*}}{\varepsilon^{2}}(I_{He}^{1st} + I_{He}^{2nd}) & \text{for } 2e \text{ or } 2h \text{ (Helium type)}, \\ E_{Li, 2} &= \frac{m^{*}}{\varepsilon^{2}}I_{Li}^{3rd} & \text{for } 1e \text{ or } 1h \text{ (Lithium type)}, \end{split}$$

$$E_{Li,2} = \frac{m^*}{\varepsilon^2} (I_{Li}^{2nd} + I_{Li}^{3rd})$$
 for 2e or 2h (Lithium type),

$$E_{Li,3} = \frac{m^*}{\varepsilon^2} (I_{Li}^{1st} + I_{Li}^{2nd} + I_{Li}^{3rd})$$
 for 3e or 3h (Lithium type),

where ${}^{E}_{H}$, ${}^{E}_{He}$, ${}^{E}_{Li}$, and ${}^{E}_{Hydride}$ are the attaching energies of diffuse states, m^{*} is the respective effective mass of the electron or the hole, ε is dielectric constant (10.98 for adiabatic processes from our previous work²), Z is the charge of the compact defect state, I represents the ionisation potential, and A represents the electron affinity (I and A values are summarized in Table S2). Carriers are trapped by a representative Helium atom if the compact defect charge state is +2/-2, and by a Lithium atom if the compact charge state is +3/-3. Due to the lack of experimental values of effective masses of electrons and holes in AlN, we take the theoretical values from the previous literature, which are ${}^{0.30m_0}$ for the electron³ and ${}^{0.73m_0}$ for the hole¹⁷. All the carrier attaching energies are summarized in Tables S3 & S4.

	<u> </u>
	Energy (eV)
I _H	-13.59844
A_H	0.754195
$I_{He}^{1st} = -A_{He}^{1st}$	-54.41776
$I_{He}^{2nd} = -A_{He}^{2nd}$	-24.58738
$I_{Li}^{1st} = -A_{Li}^{1st}$	-122.45435
$I_{Li}^{2nd} = -A_{Li}^{2nd}$	-75.64009
$I_{Li}^{3rd} - A_{Li}^{3rd}$	-5.391719

Table S6 A summary of the experimental ionization potentials (I) and electron affinities (A) of Helium and Lithium¹⁸ used for calculating diffuse electrons/hole binding energies.

Table S7 The attaching energies (eV) of the diffuse electrons in AlN with respect.

Electron type	Defect charge, Z	Attaching energy (eV)
1e (Hydrogen type)	+1	-0.034
2e (Hydride type)	+1	-0.036
1e (Helium type)	+2	-0.116
2e (Helium type)	+2	-0.197
1e (Lithium type)	+3	-0.305
2e (Lithium type)	+3	-0.493
3e (Lithium type)	+3	-0.506

Table S8 The attaching energies (eV) of the diffuse holes in AlN with respect.

Hole type	Defect charge, Z	Attaching energy (eV)
1h (Hydrogen type)	-1	-0.082
2h (Hydride type)	-1	-0.087
1h (Helium type)	-2	-0.328
2h (Helium type)	-2	-0.476
1h (Lithium type)	-3	-0.738
2h (Lithium type)	-3	-1.195
3h (Lithium type)	-3	-1.227

				Functional	
Defect charge	De	fect type	B97-2	PBE0	BB1K
	Compact	V^{0}_{Al}	6.021	6.236	6.943
		$V_{Al}^{1+} + 1e_{(H)}$	9.592	9.655	10.003
0	Diffus	$V_{Al}^{1-} + 1h_{(H)}$	9.177	9.553	10.636
	Diffuse	$V_{Al}^{2-} + 2h_{(He)}$	12.424	12.970	14.472
		$V_{Al}^{3-} + 3h_{(Li)}$	15.675	16.375	18.212
	Compact	V^{1-}_{Al}	9.259	9.636	10.718
1-	D'66	$V_{Al}^{2-} + 1h_{(He)}$	12.572	13.118	14.620
	Diffuse	$V_{Al}^{3-} + 2h_{(Li)}$	15.708	16.407	18.245
2	Compact	V_{Al}^{2-}	12.900	13.446	14.948
2-	Diffuse	$V_{Al}^{3-} + 1h_{(Li)}$	16.164	16.863	18.701
1.	Compact	$V^{1 +}_{Al}$	3.426	3.489	3.837
1+	Diffuse	$V_{Al}^{1-} + 2h_{(H)}$	9.172	9.549	10.632

Table S9 Formation energies (eV) of compact and diffuse states of V_{Al} in AlN. The compact state energies are taken from the defect formation energies at VBM level. The hydrogenic state energies for diffuse electrons and holes are calculated with respect to the corresponding formation energies at VBM.

Table S10 Formation energies (eV) of compact and diffuse states of V_N in AlN. The compact state energies are taken from the defect formation energies at CBM level. The hydrogenic state energies for diffuse electrons and holes are calculated with respect to the corresponding formation energies at CBM.

				Functional	
Defect charge	De	fect type	B97-2	PBE0	BB1K
	Compact	V_N^0	6.326	6.379	6.490
		$V_{N}^{1-} + 1h_{(H)}$	12.465	12.658	13.110
0	Diffuse	$V_{N}^{1+} + 1e_{(H)}$	6.490	6.522	6.150
	Diffuse	$V_{N}^{2+} + 2e_{(He)}$	9.730	9.679	9.108
		$V_{N}^{3+} + 3e_{(Li)}$	13.132	13.110	12.110
	Compact	V_N^{1+}	6.524	6.556	6.184
1+	Diffue	$V_{N}^{2+} + 1e_{(He)}$	9.792	9.740	9.169
	Diffuse	$V_{N}^{3+} + 2e_{(Li)}$	13.145	13.123	12.123
2	Compact	V_{N}^{2+}	9.927	9.876	9.305
2+	Diffuse	$V_{N}^{3+} + 1e_{(Li)}$	13.333	13.312	12.312
1	Compact	V_N^{1-}	6.347	6.540	6.992
1-	Diffuse	$V_{N}^{1+} + 2e_{(H)}$	6.488	6.520	6.149

				Functional	
Defect charge	De	fect type	B97-2	PBE0	BB1K
	Compact	Al_i^0	12.941	12.639	12.287
0		$Al_{i}^{1+} + 1e_{(H)}$	12.469	12.103	11.262
0	Diffuse	$Al_{i}^{2} + 2e_{(He)}$	13.498	12.958	11.654
		$Al_{i}^{3+} + 3e_{(Li)}$	13.973	13.313	11.244
	Compact	Al_{i}^{1}	12.503	12.137	11.296
1+		$Al_{i}^{2+} + 1e_{(He)}$	13.559	13.019	11.716
	Diffuse	$Al_{i}^{3+}+2e_{(Li)}$	13.986	13.327	11.257
21	Compact	Al_{i}^{2}	13.695	13.154	11.851
2+	Diffuse	$Al_{i}^{3+} + 1e_{(Li)}$	14.174	13.515	11.446

Table S11 Formation energies (eV) of compact and diffuse states of Al_i in AlN. The compact state energies are taken from the defect formation energies at CBM level. The hydrogenic state energies for diffuse electrons and holes are calculated with respect to the corresponding formation energies at CBM.

Table S12 Formation energies (eV) of compact and diffuse states of $N_{i, oct}$. The compact state energies are taken from the defect formation energies at VBM level. The hydrogenic state energies for diffuse electrons and holes are calculated with respect to the corresponding formation energies at VBM.

				Functional	
Defect charge	Def	ect type	B97-2	PBE0	BB1K
	Compact	$N_{i, oct}^{0}$	7.833	7.693	7.586
0		$N_{i, oct}^{1-} + 1h_{(H)}$	11.862	11.744	12.001
0	Diffuse	$N_{i, oct}^{2-} + 2h_{(He)}$	15.962	15.875	16.549
		$N_{i, oct}^{3 -} + 3h_{(Li)}$	20.199	20.288	21.235
1-	Compact	N _{i, oct}	11.944	11.826	12.083
	D'00	$N_{i, oct}^{2 -} + 1h_{(He)}$	16.110	16.023	16.697
	Diffuse	$N_{i, oct}^{3 -} + 2h_{(Li)}$	20.232	20.320	21.267
2	Compact	N ²⁻ <i>i</i> , <i>oct</i>	16.438	16.351	17.025
Δ-	Diffuse	$N_{i, oct}^{3 -} + 1h_{(Li)}$	20.688	20.777	21.723

			Functional			
Defect charge	Defect type		B97-2	PBE0	BB1K	
0	Compact	$N_{i, split}^{0}$	4.217	4.048	4.165	
	Diffuse	$N_{i, split}^{-1} + 1h_{(H)}$	8.348	8.299	8.757	
		$N_{i, split}^{1+} + 1e_{(H)}$	6.698	6.422	6.065	
		$N_{i, split}^{2+} + 2e_{(He)}$	10.499	10.144	9.310	
		$N_{i,split}^{3+} + 3e_{(Li)}$	14.561	14.152	12.837	
1+	Compact	$N_{i, split}^{1+}$	6.732	6.456	6.098	
	Diffuse	$N_{i, split}^{2+} + 1e_{(He)}$	10.560	10.205	9.371	
		$N_{i,split}^{3+} + 2e_{(Li)}$	14.575	14.165	12.850	
2+	Compact	$N_{i, split}^{2+}$	10.696	10.340	9.506	
	Diffuse	$N_{i, split}^{3+} + 1e_{(Li)}$	14.763	14.354	13.038	
1-	Compact	N _i , split	2.230	2.181	2.639	
	Diffuse	$N_{i, split}^{1+} + 2e_{(H)}$	6.696	6.420	6.063	

Table S13 Formation energies (eV) of compact and diffuse states of $N_{i, split}$. The compact state energies are taken from the defect formation energies at CBM level. The hydrogenic state energies for diffuse electrons and holes are calculated with respect to the corresponding formation energies at CBM.

Table S14 Formation energies (eV) of compact and diffuse states of $N_{Al,A}$. The compact state energies are taken from the defect formation energies at CBM level. The hydrogenic state energies for diffuse electrons and holes are calculated with respect to the corresponding formation energies at CBM.

			Functional			
Defect charge	Def	ect type	B97-2	PBE0	BB1K	
0	Compact	$N_{Al,A}^{0}$	6.930	7.171	7.790	
	Diffuse	$N_{Al,A}^{-1} + 1h_{(H)}$	10.904	11.202	12.278	
		$N_{Al,A}^{1+} + 1e_{(H)}$	10.126	10.203	10.502	
		$N_{Al,A}^{2+} + 2e_{(He)}$	13.898	13.994	13.766	
		$N_{Al,A}^{3+} + 3e_{(Li)}$	17.584	17.433	16.811	
1+	Compact	$N^{1 +}_{Al, A}$	10.160	10.237	10.536	
	Diffuse	$N_{Al,A}^{2+} + 1e_{(He)}$	13.959	13.926	13.698	
		$N_{Al,A}^{3+} + 2e_{(Li)}$	17.597	17.447	16.824	
2+	Compact	$N_{Al,A}^{2+}$	14.095	14.062	13.834	
	Diffuse	$N_{Al,A}^{3+} + 1e_{(Li)}$	17.785	17.635	17.012	
1-	Compact	$N_{Al,A}^{1-}$	4.704	5.002	6.078	
	Diffuse	$N_{Al,A}^{1+} + 2e_{(H)}$	10.124	10.202	10.500	

			Functional			
Defect charge	Defect type		B97-2	PBE0	BB1K	
0	Compact	$N_{Al,B}^{0}$	7.487	7.481	8.212	
	Diffuse	$N_{Al,B}^{1-} + 1h_{(H)}$	11.540	11.833	13.005	
		$N_{Al,B}^{1+} + 1e_{(H)}$	9.647	9.525	9.748	
		$N_{Al,B}^{2+}+2e_{(He)}$	12.709	12.556	12.366	
		$N_{Al,B}^{3+} + 3e_{(Li)}$	16.049	15.794	15.247	
1+	Compact	$N_{Al,B}^{1+}$	9.681	9.558	9.782	
	Diffuse	$N_{Al,B}^{2+} + 1e_{(He)}$	12.770	12.617	12.427	
		$N_{Al,B}^{3+} + 2e_{(Li)}$	16.062	15.807	15.261	
2+	Compact	$N^{2 +}_{Al,B}$	12.906	12.752	12.562	
	Diffuse	$N_{Al,B}^{3+} + 1e_{(Li)}$	16.250	15.996	15.449	
1-	Compact	N ¹⁻ _{Al,B}	5.340	5.633	6.805	
	Diffuse	$N_{Al,B}^{1+} + 2e_{(H)}$	9.646	9.523	9.746	

Table S15 Formation energies (eV) of compact and diffuse states of $N_{Al,B}$. The compact state energies are taken from the defect formation energies at CBM level. The hydrogenic state energies for diffuse electrons and holes are calculated with respect to the corresponding formation energies at CBM.

Note S2: Computational detail of calculating density of states (DOS) using VASP

Our ab-initio calculations were performed using a plane-wave/pseudopotential DFT approach as implemented in the Vienna Ab-initio Simulation Package $(VASP)^{19-21}$. A 32-atom 2x2x2 wurtzite structure AlN supercell was constructed. To obtain computationally consistent results with our QM/MM simulations, the hybrid generalized gradient approximation (GGA) exchangecorrelation functionals of Perdew Burke-Ernzerhof modified with a predefined amount of exact exchange (PBE0)^{22,23} is used. The planewave-type basis sets with a kinetic energy cut-off of 500 eV and a gaussian smearing of 0.01 were implemented for the self-consistent field (SCF) method calculations, with a convergence criterion of $1x10^{-6}$ eV. A k-point grid of 4x4x4 was used for bulk AlN system for electronic structure calculations. The band gap value (6.11eV) was obtained with no geometry optimisation of the structure.

1E-10 1E-07 1E-06 1E-05 1E-04 1.E-02 1E-01 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E-09 1E-08 1E-03 1E+00 -0.520 -0.431 -0.401 -0.342 -0.312 -0.252 -0.193 -0.104 300 -0.550 -0.491 -0.461 -0.371 -0.282 -0.223 -0.163 -0.133 -0.074 400 -0.751 -0.711 -0.672 -0.632 -0.592 -0.553 -0.513 -0.473 -0.434 -0.394 -0.354 -0.315 -0.275 -0.235 -0.196 -0.156 -0.116 -0.857 -0.757 -0.559 -0.509 -0.212 500 -0.956 -0.906 -0.807 -0.708 -0.658 -0.609 -0.460 -0.410 -0.361 -0.311 -0.261 -0.162 -1.045 -0.985 -0.925 -0.806 -0.687 -0.628 -0.509 -0.449 -0.390 -0.330 -0.271 600 -1.164 -1.104 -0.866 -0.747 -0.568 -0.211 700 -1.374 -1.304 -1.235 -1.166 -1.096 -1.027 -0.957 -0.888 -0.818 -0.749 -0.679 -0.610 -0.541 -0.471 -0.402 -0.332 -0.263 -0.952 -0.872 -0.475 -0.396 800 -1.587 -1.507 -1.428 -1.348 -1.269 -1.190 -1.110 -1.031 -0.793 -0.713 -0.634 -0.555 -0.317 900 -1.801 -1.712 -1.623 -1.444 -1.355 -1.087 -0.998 -0.908 -0.819 -0.730 -0.640 -0.551 -0.462 -0.373 -1.533 -1.265 -1.176 1000 -2.018 -1.919 -1.819 -1.720 -1.621 -1.522 -1.422 -1.323 -1.224 -1.125 -1.026 -0.926 -0.827 -0.728 -0.629 -0.530 -0.430 -2.236 -2.127 -2.018 -1.909 -1.799 -1.690 -1.581 -1.472 -1.363 -1.254 -1.036 -0.926 -0.817 -0.708 -0.599 -0.490 1100 -1.145 -1.503 -1.027 -0.670 1200 -2.456 -2.337 -2.218 -2.099 -1.980 -1.860 -1.741 -1.622 -1.384 -1.265 -1.146 -0.908 -0.789 -0.551 1300 -2.677 -2.548-2.419 -2.290 -2.161 -2.032 -1.903-1.774 -1.645 -1.516 -1.387 -1.258 -1.129 -1.000 -0.871 -0.742 -0.613 1400 -2.900 -2.761 -2.622 -2.483 -2.344 -2.205 -2.066 -1.927 -1.788 -1.650 -1.511 -1.372 -1.233 -1.094 -0.955 -0.816 -0.677 1500 -3.123 -2.975 -2.826 -2.677 -2.528 -2.379 -2.231 -2.082 -1.933 -1.784 -1.635 -1.486 -1.338 -1.189 -1.040 -0.891 -0.742 1600 -3.349 -3.190 -3.031 -2.872 -2.714 -2.555 -2.396 -2.237 -2.079 -1.920 -1.761 -1.602 -1.444 -1.285 -1.126 -0.968 -0.809 1700 -3.575 -3.406 -3.237 -3.069 -2.900 -2.732 -2.563 -2.394 -2.226 -2.057 -1.888 -1.720 -1.551 -1.382 -1.214 -1.045 -0.876 1800 -3.802 -3.624 -3.445 -3.266 -3.088 -2.909 -2.731 -2.552 -2.373 -2.195 -2.016 -1.838 -1.659 -1.481 -1.302 -1.123 -0.945 1900 -4.030 -3.842 -3.653 -3.465 -3.276 -3.088 -2.899 -2.711 -2.522 -2.334 -2.145 -1.957 -1.768 -1.580 -1.391 -1.203 -1.014 2000 -4.260 -4.061 -3.863 -3.665 -3.466 -3.268 -3.069 -2.871 -2.672 -2.474 -2.276 -2.077 -1.879 -1.680 -1.482 -1.283 -1.085 2100 -4.490 -4.282 -4.073 -3.865 -3.657 -3.448 -3.240 -3.032 -2.823 -2.615 -2.407 -2.198 -1.990 -1.782 -1.573 -1.365 -1.157 -4.285 -2.975 -2.102 -1.665 2200 -4.721 -4.503 -4.066 -3.848 -3.630 -3.412 -3.193 -2.757 -2.538 -2.320 -1.884 -1.447 -1.229 2300 -4.953 -4.725 -4.497 -4.269 -4.040 -3.812 -3.584 -3.356 -3.128 -2.899 -2.671 -2.443 -2.215 -1.987 -1.759 -1.530 -1.302 2400 -5.186 -4.948-4.710 -4.472 -4.234-3.995 -3.757 -3.519 -3.281 -3.043 -2.805 -2.567 -2.329 -2.091-1.852 -1.614 -1.3762500 -5.420 -5.171 -4.923 -4.675 -4.427 -4.179 -3.931 -3.683 -3.435 -3.187 -2.939 -2.691 -2.443 -2.195 -1.947 -1.699 -1.451 2600 -5.654 -5.396 -5.138 -4.880 -4.622 -4.364 -4.106 -3.848 -3.590 -3.332 -3.074 -2.816 -2.559 -2.301 -2.043 -1.785 -1.527 2700 -5.889 -5.621 -5.353 -5.085 -4.818 -4.550 -4.282 -4.014 -3.746 -3.478 -3.210 -2.942 -2.675 -2.407 -2.139 -1.871 -1.603 2800 -5.291 -5.014 -4.458 -4.180 -3.902 -3.069 -2.791 -2.236 -1.958 -6.125 -5.847 -5.569 -4.736 -3.625 -3.347 -2.513 -1.680

Table S16 The nitrogen chemical potential calculated from the experimental thermochemical enthalpy and entropy of N_2 . (The first column: temperature (K). The top row: N_2 partial pressure (atm)).

Figure S4 The nitrogen chemical potential calculated from the experimental thermochemical enthalpy and entropy of N₂ from Table S14. The solid line indicates the chemical potential at N-poor limit ($\mu_N = -3.296 \text{ eV}$) of AlN formation. The region to the left of the N-poor limit ($\mu_N \ge -3.296 \text{ eV}$) represents allowed N partial pressure with respect to temperature.

Reference for ESI:

- I. A. Aleksandrov and K. S. Zhuravlev, *Journal of Physics: Condensed Matter*, 2020,
 32, 435501.
- L. Zhu, C. R. A. Catlow, Q. Hou, X. Zhang, J. Buckeridge and A. A. Sokol, *J. Mater. Chem. A*, 2023, **11**, 15482–15498.
- 3 I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, *Journal of Applied Physics*, 2001,
 89, 5815–5875.
- 4 N. S. Kanhe, A. B. Nawale, R. L. Gawade, V. G. Puranik, S. V. Bhoraskar, A. K. Das and V. L. Mathe, *Journal of Crystal Growth*, 2012, **339**, 36–45.
- 5 Q. Yan, A. Janotti, M. Scheffler and C. G. Van de Walle, *Applied Physics Letters*, 2014, **105**, 111104.
- 6 B. E. Gaddy, Z. Bryan, I. Bryan, R. Kirste, J. Xie, R. Dalmau, B. Moody, Y. Kumagai,
 T. Nagashima, Y. Kubota, T. Kinoshita, A. Koukitu, Z. Sitar, R. Collazo and D. L.
 Irving, *Applied Physics Letters*, 2013, **103**, 161901.
- 7 Y. Chen, L. Wu, D. Liang, P. Lu, J. Wang, J. Chen, H. Cao and L. Han, *Computational Materials Science*, 2021, **188**, 110169.
- 8 Y. Zhang, W. Liu and H. Niu, *Physical Review B*, 2008, **77**, 35201.
- 9 K. Laaksonen, M. G. Ganchenkova and R. M. Nieminen, *Journal of Physics: Condensed Matter*, 2009, **21**, 15803.
- 10C. Stampfl and C. G. Van de Walle, *Physical Review B*, 2002, **65**, 155212.
- 11Y. Gao, D. Sun, X. Jiang and J. Zhao, *Journal of Applied Physics*, 2019, **125**, 215705.
- 12H. Seo, M. Govoni and G. Galli, *Scientific Reports*, 2016, **6**, 20803.

- 13P. Boguslawski, E. Briggs, T. A. White, M. G. Wensell and J. Bernholc, *MRS Online Proceedings Library*, 1994, **339**, 693–698.
- 14A. Szállás, K. Szász, X. T. Trinh, N. T. Son, E. Janzén and A. Gali, *Journal of Applied Physics*, 2014, **116**, 113702.
- 15Z. Xie, Y. Sui, J. Buckeridge, C. R. A. Catlow, T. W. Keal, P. Sherwood, A. Walsh, D.
 O. Scanlon, S. M. Woodley and A. A. Sokol, *physica status solidi (a)*, 2017, **214**, 1600445.
- 16J. Buckeridge, C. R. A. Catlow, M. R. Farrow, A. J. Logsdail, D. O. Scanlon, T. W. Keal, P. Sherwood, S. M. Woodley, A. A. Sokol and A. Walsh, *Phys. Rev. Materials*, 2018, **2**, 54604.
- 17K. Kim, W. R. L. Lambrecht, B. Segall and M. van Schilfgaarde, *Physical Review B*, 1997, **56**, 7363–7375.
- 18CRC Handbook, *CRC Handbook of Chemistry and Physics*, CRC Press/Taylor & Francis, Boca Raton, FL, USA, 2021.
- 19G. Kresse and J. Hafner, *Physical Review B*, 1993, **47**, 558–561.
- 20G. Kresse and J. Furthmüller, *Physical Review B*, 1996, **54**, 11169–11186.
- 21G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758–1775.
- 22J. P. Perdew, M. Ernzerhof and K. Burke, *The Journal of Chemical Physics*, 1996, **105**, 9982–9985.
- 23C. Adamo and V. Barone, *The Journal of Chemical Physics*, 1999, **110**, 6158–6170.