Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Ultra-high piezo-photocatalytic performance of (Na, Sm) codoped CaBi₂Nb₂O₉ nanoplates by surface effect

Qiuyan Yi, Xiaogang Luo, Xuefan Zhou, Yan Zhao, Qiong Liu, Qiwei Sun, Hang Luo*,

Dou Zhang*

State Key Laboratory of Powder Metallurgy, Central South University, Changsha,

Hunan 410083, China

*Corresponding author

E-mail address:

hangluo@csu.edu.cn (Hang Luo)

dzhang@csu.edu.cn (Dou Zhang)

Figure S1 XRD pattern of CBN1.

Figure S2 SEM images of a) CBN1, c) CBN3, and e) CBN4. Distribution maps of grain sizes of b) CBN1, d) CBN3, and f) CBN4.

Figure S3 SEM images focusing on the thickness of a) CBN1, b) CBN2, c) CBN3, and d) CBN4. e) The increasing average thickness with the calcined temperature.

Figure S4 N₂ isothermal adsorption curves of CBN2, CBN3, and CBN4.

Figure S5 Contact angles of a) CBN2, c) CBN3, and e) CBN4 on water, b) CBN2, d) CBN3, and f) CBN4 on n-hexadecane.

Figure S6 XPS spectra of a) Ca 2p, b) Bi 4f, c) Nb 3d, and d) O 1s of CBN3.

Figure S7 XPS spectra of a) Ca 2p, b) Bi 4f, c) Nb 3d, and d) O 1s of CBN4.

Figure S8 a) SEM image, b) EDS layered image, c) map sum spectrum, d) Nb, e) Bi, f) Ca, g) O, h) Na, and i) Sm of CBN2.

Figure S9 a) Morphological image, b) amplitude image, and c) phase image of CBN2.d) Morphological image, e) amplitude image, and f) phase image of CBN3, g)Morphological image, h) amplitude image, and i) phase image of CBN4.

Figure S10 3D images of a) CBN3 and b) CBN4 by PFM.

Figure S11 Piezo-photocatalytic performance on 20 mg·L⁻¹ RhB by CBN2 under the following applied excitations: a) Ultrasound + Light, b) Ultrasound + Dark, c) Stirring + Light, and d) Stirring + Dark. Plots of e) C/C₀ and f) the fitted *k*-values versus reaction time.

Figure S12 Piezo-photocatalytic performance on 20 mg·L⁻¹ RhB by CBN3 under the following applied excitations: a) Ultrasound + Light, b) Ultrasound + Dark, c) Stirring + Light, and d) Stirring + Dark. Plots of e) C/C₀ and f) the fitted *k*-values versus reaction time.

Figure S13 Piezo-photocatalytic performance on 20 mg·L⁻¹ RhB by CBN4 under the following applied excitations: a) Ultrasound + Light, b) Ultrasound + Dark, c) Stirring + Light, and d) Stirring + Dark. Plots of e) C/C₀ and f) the fitted *k*-values versus reaction time.

Figure S14 Piezo-photocatalytic curves on **20 mg·L⁻¹ RhB by CBN2** with a) only catalysts, b) TBA, c) EDTA, and d) SOD added.

Figure S15 Piezo-photocatalytic performance on 5 mg·L⁻¹ MB by a) CBN3, b) CBN4, and c) self-degradation. d) Plots of C/C_0 versus reaction time.

Figure S16 Piezo-photocatalytic performance on 10 mg·L⁻¹ MO by a) CBN3, b) CBN4, and c) self-degradation. d) Plots of C/C_0 versus reaction time.

Figure S17 Piezo-photocatalytic performance on 10 mg·L⁻¹ IC by a) CBN3, b) CBN4, and c) self-degradation. d) Plots of C/C_0 versus reaction time.

Figure S18 Piezo-photocatalytic performance on **20 mg·L⁻¹ IC** by a) self-degradation, b) CBN2, c) CBN3, and d) CBN4. Plots of e) C/C_0 and f) the fitted *k*-values versus reaction time.

Figure S19 Piezo-photocatalytic performance on 50 mg·L⁻¹ IC by a) self-degradation,
b) CBN2, c) CBN3, and d) CBN4.

Figure S20 Piezo-photocatalytic performance on **10 mg·L⁻¹ TC** by a) self-degradation, b) CBN2, c) CBN3, and d) CBN4. Plots of e) C/C_0 and f) the fitted *k*-values versus reaction time.

Figure S21 Piezo-photocatalytic performance on 10 mg·L⁻¹ OTTCH by a) self-degradation, b) CBN2, c) CBN3, and d) CBN4. Plots of e) C/C₀ and f) the fitted *k*-values versus reaction time.

Figure S22 Piezo-photocatalytic performance on 10 mg·L⁻¹ TCH by a) selfdegradation, b) CBN2, c) CBN3, and d) CBN4. Plots of e) C/C₀ and f) the fitted *k*values versus reaction time.

Element	Signal Type	Wt%
0	EDS	17.44
Na	EDS	0.17
Ca	EDS	4.52
Nb	EDS	26.98
Sm	EDS	0.40
Bi	EDS	50.49
Total		100.00

 Table S1 Contents of the elements in CBN2 obtained by EDS.

Table S2 Fitted results of Nyquist plots.

Samples	Ohmic Resistance	Transfer Resistance
CBN2	13.89	85461
CBN3	16.93	315100
CBN4	14.55	134860

catalyst	$C_{(\text{catalyst})}$	$C_{(\mathrm{Dye})}$	Condition	Year	$k \times 10^{-3}$ (min ⁻¹)	Ref
BaTiO ₃ -O _V s	1 g·L ⁻¹	10 mg·L ⁻¹ RhB	Ultrasonic: 300 W, 40 kHz Xenon lamp: 300 W	2023	34.1	1
NaNbO ₃ /WO ₃	0.25 g·L ⁻¹	10 mg·L ⁻¹ RhB	Ultrasonic: 180 W, 40 kHz Xenon lamp: 300 W	2023	10.7	2
Bi _{0.5} Na _{0.5} TiO ₃	1 g·L ⁻¹	5 mg·L ⁻¹ RhB	Ultrasonic: 200 W, 40 kHz Xenon lamp: 300 W	2022	167	3
BiOCI/NaNbO3	1 g·L ⁻¹	5 mg·L ⁻¹ RhB	Ultrasonic: 50 W, 40 kHz Xenon lamp: 300 W	2022	19.2	4
Ag@Na _{0.5} Bi _{0.5} TiO ₃	1 g·L ⁻¹	5 mg·L ⁻¹ RhB	Ultrasonic: 300 W, 40 kHz Xenon lamp: 300 W	2022	146	5
AgCl/BiFeO3	0.5 g·L ⁻¹	10 mg·L ⁻¹ RhB	Xenon lamp: 300 W	2024	13.07	6
(Na ⁺ , Sm ³⁺) co- doped CaBi ₂ Nb ₂ O ₉	0.5 g·L ⁻¹	10 mg·L ⁻¹ RhB	Ultrasonic: 200 W, 45 kHz Xenon lamp: 300 W	2024	773.4	This work
(Na ⁺ , Sm ³⁺) co- doped CaBi ₂ Nb ₂ O ₉	0.5 g·L ⁻¹	20 mg·L ⁻¹ RhB	Ultrasonic: 200 W, 45 kHz Xenon lamp: 300 W	2024	395.6	This work
BiVO4 nanorods	0.33 g·L ⁻¹	2 mg·L ⁻¹ MB	Ultrasonic: 140 W, 35 kHz LED bulb: 20 W	2022	100	7
Bi ₂ VO _{5.5}	10 g·L ⁻¹	5 mg·L ⁻¹ MB	Ultrasonic: 120 W, 40 kHz Two bulbs: 15 W each	2023	5.29	8
PVDF/CaNO ₃	/	2.5 mg·L ⁻¹ MB	Ultrasonic: 250 W, 18 kHz Mercury lamp: 250 W	2023	83	9
KNbO ₃ /MoS ₂	1 g·L ⁻¹	10 ppm MB	Ultrasonic: 120 W, 40 kHz Mercury lamp: 300 W	2023	10.17	10
(Na ⁺ , Sm ³⁺) co-	0.5 g·L ⁻¹	5 mg·L ⁻¹	Ultrasonic: 200 W, 45 kHz	2024	120.1	This

 Table S3 Fitted k-values of recently reported piezo-photocatalysis.

doped CaBi ₂ Nb ₂ O ₉		MB	Xenon lamp: 300 W			work
ZnO/MoS ₂	1	10 mg·L ⁻¹	Stirring: 1000 rmp	2021	59	11
	/	МО	Xe lamp: 300 W	2021		
ZnO-S	1 g·L ⁻¹	50 mg·L ⁻¹	Ultrasonic: 200 W, 40 kHz	2021	19	12
		МО	Mercury lamp: 300 W			
BaTiO./CuO	1 T-l	10 mg·L ⁻¹	Ultrasonic	2022	50	13
Ba11O ₃ /CuO	I g·L	МО	Mercury lamp: 200 W	2022		
$Cu@Na_{0.5}Bi_{4.5}Ti_4O_{15}$	1 c.I -	10 mg·L ⁻¹	Stirring	2022	24.67	14
	I g·L ·	МО	Mercury lamp: 300 W	2022		
(Na ⁺ , Sm ³⁺) co-	0.5 g·L ⁻¹	10 mg·L ⁻¹	Ultrasonic: 200 W, 45 kHz	2024	49.3	This
doped CaBi ₂ Nb ₂ O ₉		МО	Xenon lamp: 300 W	2024		work
BaTiO ₃	0.5 g·L ⁻¹	10 mg·L ⁻¹	Ultrasonic: 200 W, 45 kHz	2022	99	15
nanoparticles		IC	Xenon lamp: 300 W	2023		10
BaTiO ₃ @TiO ₂		10 mg·L ⁻¹	Ultrasonic: 200 W, 45 kHz	2021	108	16
	0.5 g·L ¹	IC	Xenon lamp: 300 W	2021		10
(Na ⁺ , Sm ³⁺) co-	0.5 g·L ⁻¹	10 mg·L ⁻¹	Ultrasonic: 200 W, 45 kHz	2024	530.7	This
doped CaBi ₂ Nb ₂ O ₉		IC	Xenon lamp: 300 W			work
(Na ⁺ , Sm ³⁺) co-	0.5 g·L ⁻¹	20 mg·L ⁻¹	Ultrasonic: 200 W, 45 kHz	2024	274.0	This
doped CaBi ₂ Nb ₂ O ₉		IC	Xenon lamp: 300 W	2024		work
(Na ⁺ , Sm ³⁺) co-	0.5 g·L ⁻¹	50 mg·L ⁻¹	Ultrasonic: 200 W, 45 kHz	2024	1	This
doped CaBi ₂ Nb ₂ O ₉		IC	Xenon lamp: 300 W	2024	115.3	work

References

(1) Xiao, Q.; Chen, L.; Xu, Y.; Feng, W.; Qiu, X. Impact of oxygen vacancy on piezo-photocatalytic catalytic activity of barium titanate. *Applied Surface Science* **2023**, *619*, 156794. DOI: <u>https://doi.org/10.1016/j.apsusc.2023.156794</u>.

(2) Yan, X.; Zhang, S.; Pan, L.; Ai, T.; Li, Z.; Niu, Y. Synergetic piezo-photocatalytic effect in NaNbO₃/WO₃ photocatalyst for RhB degradation. *Inorganic Chemistry Communications* **2023**, *158*, 111510. DOI: <u>https://doi.org/10.1016/j.inoche.2023.111510</u>.

(3) Zhou, X.; Sun, Q.; Xiao, Z.; Luo, H.; Zhang, D. Three-dimensional BNT/PVDF composite foam with a hierarchical pore structure for efficient piezo-photocatalysis. *Journal of Environmental Chemical Engineering* **2022**, *10* (5). DOI: 10.1016/j.jece.2022.108399.

(4) Li, L.; Cao, W.; Yao, J.; Liu, W.; Li, F.; Wang, C. Synergistic piezo-photocatalysis of BiOCl/NaNbO₃ heterojunction piezoelectric composite for high-efficient organic pollutant degradation. In *Nanomaterials*, 2022; Vol. 12.

(5) Shi, J.; Xie, Z.; Tang, X.; Wang, Y.; Yuan, G.; Liu, J.-M. Enhanced piezo-photocatalytic performance of Ag@Na_{0.5}Bi_{0.5}TiO₃ composites. *Journal of Alloys and Compounds* **2022**, *911*, 164885. DOI: <u>https://doi.org/10.1016/j.jallcom.2022.164885</u>.

(6) Xian, T.; Ma, X.; Sun, X.; Sun, C.; Wang, H.; Di, L.; Ma, K.; Yang, H. Construction of p-n type AgCl/BiFeO₃ heterojunction with promising photocatalytic and piezo-photocatalytic water purification. *Optical Materials* **2024**, *149*, 115054. DOI: https://doi.org/10.1016/j.optmat.2024.115054.

(7) Deka, S.; Devi, M. B.; Khan, M. R.; Keerthana; Venimadhav, A.; Choudhury, B. Piezo-photocatalytic and photocatalytic bismuth vanadate nanorods with antibacterial property. *ACS Applied Nano Materials* **2022**, *5* (8), 10724-10734. DOI: 10.1021/acsanm.2c02072.

(8) Kumar, M.; Vaish, R.; Kebaili, I.; Boukhris, I.; Kwang Benno Park, H.; Hwan Joo, Y.; Hyun Sung, T.; Kumar, A. Ball-milling synthesized Bi₂VO_{5.5} for piezo-photocatalytic assessment. *Scientific Reports* 2023, *13* (1), 8188. DOI: 10.1038/s41598-023-33658-2.

(9) Orudzhev, F. F.; Sobola, D. S.; Ramazanov, S. M.; Častková, K.; Selimov, D. A.; Rabadanova, A. A.; Shuaibov, A. O.; Gulakhmedov, R. R.; Abdurakhmanov, M. G.; Giraev, K. M. Hydrogen bondinduced activation of photocatalytic and piezophotocatalytic properties in calcium nitrate doped electrospun PVDF fibers. *Polymers* **2023**, *15* (15), 3252.

(10) Ma, W.; Du, M.; Li, H.; Wang, Y.; Han, Z.; Chen, C.; Zhang, S.; Han, Q.; Li, Y.; Fang, J.; et al. The binary piezoelectric synergistic effect of KNbO₃/MoS₂ heterojunction for improving photocatalytic performance. *Journal of Alloys and Compounds* **2023**, *960*, 170669. DOI: https://doi.org/10.1016/j.jallcom.2023.170669.

(11) Fu, Y.; Ren, Z.; Wu, J.; Li, Y.; Liu, W.; Li, P.; Xing, L.; Ma, J.; Wang, H.; Xue, X. Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances. *Applied Catalysis B: Environmental* **2021**, *285*, 119785. DOI: <u>https://doi.org/10.1016/j.apcatb.2020.119785</u>.

(12) Yang, R.; Wu, Z.; Yang, Y.; Li, Y.; Zhang, L.; Yu, B. Understanding the origin of synergistic catalytic activities for ZnO based sonophotocatalytic degradation of methyl orange. *Journal of the Taiwan Institute of Chemical Engineers* **2021**, *119*, 128-135. DOI: <u>https://doi.org/10.1016/j.jtice.2021.01.028</u>.

(13) Yu, C.; Tan, M.; Tao, C.; Hou, Y.; Liu, C.; Meng, H.; Su, Y.; Qiao, L.; Bai, Y. Remarkably enhanced piezo-photocatalytic performance in BaTiO₃/CuO heterostructures for organic pollutant degradation. *Journal of Advanced Ceramics* **2022**, *11* (3), 414-426. DOI: 10.1007/s40145-021-0544-4.

(14) Lan, S.; Zheng, M.; Wu, J.; Lv, H.; Gao, X.; Zhang, Y.; Zhu, M.; Hou, Y. Copper nanoparticlesmodified Na_{0.5}Bi_{4.5}Ti₄O₁₅ micron-sheets as a highly efficient and low cost piezo-photocatalyst. *Journal of Alloys and Compounds* **2023**, *935*, 168130. DOI: <u>https://doi.org/10.1016/j.jallcom.2022.168130</u>.

(15) Yi, Q.; Luo, H.; Xiong, H.; Liu, Q.; Zhai, D.; Sun, Q.; Zhang, D. Enhanced catalytic activity of Molar-like BaTiO₃ by oxygen vacancies. *Ceramics International* **2023**, *49* (23, Part B), 39707-39718. DOI: <u>https://doi.org/10.1016/j.ceramint.2023.09.332</u>.

(16) Liu, Q.; Zhai, D.; Xiao, Z.; Tang, C.; Sun, Q.; Bowen, C. R.; Luo, H.; Zhang, D. Piezo-photoelectronic coupling effect of BaTiO₃@TiO₂ nanowires for highly concentrated dye degradation. *Nano Energy* **2022**, *92*, 106702. DOI: 10.1016/j.nanoen.2021.106702.