Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Synergistic integration of PdCu alloy on TiO₂ for efficient photocatalytic CO₂ reduction to CH₄ with H₂O

Yang Liu,^a Shujuan Sun,^b Meng Ma,^b Xinyu Zhong,^a Fengyu Gao,^{c*} Guangtong Hai,^{d*} Xiubing Huang^{*a}

^a Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 10083, PR China

^b State Power Investment Corporation Central Research Institute (SPICRI), Beijing, 100029, PR China

^c School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China

^d Institute of Zhejiang University-Quzhou, Zhejiang University, 99 Zheda Road, Quzhou, Zhejiang Province 324000, P. R. China

Corresponding authors: <u>ahnuhkgao@163.com</u> (F. Gao), <u>hgt.2021@tsinghua.org.cn</u> (G. Hai), <u>xiubinghuang@ustb.edu.cn</u> (X. Huang)

Figure S1. SEM image of the sample (a) TiO₂ NS; (b) Cu-TiO₂ NS; (c) Pd-TiO₂ NS; (d) (PdCu)₁-TiO₂ NS; (e) (PdCu)₂-TiO₂ NS; (f) (PdCu)₃-TiO₂ NS.

Figure S2. (a, b) Low magnification TEM images of TiO₂ NS; (c) HR-TEM images of TiO₂ NS; low magnification TEM images of some composites (d) Cu-TiO₂ NS; (e) Pd-TiO₂ NS; (f) (PdCu)₂-TiO₂ NS.

Figure S3. FTIR spectra of TiO₂ NS and its composite materials.

Figure S4. XPS full spectrum of the sample.

Figure S5. (a) SEM and (b) TEM images of the catalyst after cyclic testing.

Figure S6. (a) XRD and (b) FT-IR spectra before and after catalyst reaction.

Figure S7. UV-vis spectra after 7 catalyst reactions.

Figure S8. Structural models of optimized (a) TiO₂ and (b) PdCu-TiO₂.

The optimized model of TiO_2 has 108 atoms, 36 Ti, 72 O, which is in accordance with the stoichiometric ratio. The optimized model for PdCu-TiO₂ has 172 atoms, 36 Ti, 72 O, 56 Pd and 8 Cu, which is also in accordance with the stoichiometric ratio.

Figure S9. Charge density difference in PdCu-TiO₂ NS.

	TiO ₂ NS/mg	PVP/mg	AA/mg	KBr/mg	PdCl ₂ /ml	$CuCl_2 \cdot 2H_2O/ml$
(PdCu) ₁ -TiO ₂ NS	100	343.64	60	150	1.55	0.43
(PdCu) ₂ -TiO ₂ NS		687.27	120	300	3.1	0.85
(PdCu) ₃ -TiO ₂ NS		1030.92	180	450	4.65	1.28
Pd-TiO ₂ NS		687.27	120	300	3.55	-
Cu-TiO ₂ NS		687.27	120	300	-	6.82

Table S1. Amount of reagents for the preparation of different samples.

Table S2. The mass fraction of metal atoms in the catalyst and the molar ratio between PdCu were determined by ICP-MS.

Photocatalyst	Total mass share of Pd and Cu (%)	Molar ratio of Pd:Cu
Pd-TiO ₂	19.2	/
(PdCu) ₁ -TiO ₂	9.1	6.83
(PdCu) ₂ -TiO ₂	17.9	6.91
(PdCu) ₃ -TiO ₂	27.2	6.86
Cu-TiO ₂	0.05	/

Photocatalysts	Light sources	Reaction medium	products	production yield (µmol·g ⁻¹ ·h ⁻ ¹)	Selectivity	Note	Ref
(PdCu) ₂ -TiO ₂ NS	300 W Xe lamp	H ₂ O vapor	CH ₄	18.1	98.7%	/	This work
Pt _{0.5} Cu _{0.5} /TiO ₂	300 W Xe lamp	H ₂ O vapor	CH4	13.5	~97%	Cumbersome process, long preparation cycle	I
Cu/TiO ₂	300 W Xe lamp	H ₂ O vapor	CO	15.3	95.9%	Low CH ₄ selectivity	2
Au-TiO ₂	300 W Xe lamp (λ < 420 nm)	H ₂ O vapor	СО	25.9	83%	High cost, low CH ₄ selectivity	3
Ag-TiO ₂ /TS-1	300 W Xe lamp	H ₂ O vapor	СО	6.8	85%	Low CH ₄ selectivity and yield	4
Au@ZnS/3DOMm- TiO ₂ -2	300 W Xe lamp	H ₂ O vapor	CH ₄	33.2	91.5%	High cost, cumbersome process	5
BT/ZIS	150 W Xe lamp (AM 1.5G filter)	H ₂ O+TEOA	СО	71.6	87%	Add sacrificial agent, low CH_4 selectivity	6
Pt ₁ @CN	300 W Xe lamp (AM 1.5G filter)	H ₂ O vapor	CO	84.8	~100%	Low CH_4 selectivity	7

Table S3. Comparison of the performance of recent research photocatalysts.

Reference

- 1. X. Wang, H. Liao, W. Tan, W. Song, X. Li, J. Ji, X. Wei, C. Wu, C. Yin and Q. Tong, ACS Applied Materials & Interfaces, 2024, 16, 22089-22101.
- 2. K. Zhu, Q. Zhu, M. Jiang, Y. Zhang, Z. Shao, Z. Geng, X. Wang, H. Zeng, X. Wu and W. Zhang, *Angewandte Chemie International Edition*, 2022, **61**, e202207600.
- 3. A. Wang, S. Wu, J. Dong, R. Wang, J. Wang, J. Zhang, S. Zhong and S. Bai, *Chemical Engineering Journal*, 2021, **404**, 127145.
- 4. Y. Sun, G. Li, Y. Gong, Z. Sun, H. Yao and X. Zhou, *Journal of Hazardous Materials*, 2021, 403, 124019.
- 5. Y. Li, Y. Wei, J. Xiong, Z. Tang, Y. Wang, X. Wang, Z. Zhao and J. Liu, *Chemical Engineering Science*, 2024, **292**, 120017.
- 6. D. P. Kumar, K. H. Do, A. P. Rangappa, J. Lee, J. Wang, R. Boppella, M. Gopannagari, K. A. J. Reddy, D. A. Reddy and T. K. Kim, *Journal of Colloid and Interface Science*, 2023, **651**, 264-272.
- 7. S. Hu, P. Qiao, X. Liang, G. Ba, X. Zu, H. Hu, J. Ye and D. Wang, *Applied Catalysis B:* Environment and Energy, 2024, **346**, 123737.