SUPPLEMENTARY INFORMATION (SI)

High-throughput screening of carbon nitride single-atom

catalysts for nitrogen fixation based on machine learning

LinTao Xu¹, Yuhong Huang^{1, *}, Haiping Lin¹, Ruhai Du¹, Min Wang¹, Fei Ma^{2, *}, Xiumei Wei¹, Gangqiang Zhu¹, Jianmin Zhang¹

¹ School of Physics & Information Technology, Shaanxi Normal University, Xi'an

710119, Shaanxi, China

² State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong

University, Xi'an 710049, Shaanxi, China

Table S1	N_2 , N_2 , $N_2^{-N_2''}$, $\Delta L_{ad}[N_2'']$ and $N \equiv N$ of 140 SACs.					Cs.
SACs	$\Delta G_{*_{N_2}-en}$ (eV)	$\Delta G_{*_{N_2}-side}$ (eV)	$\Delta G_{*N_2} - *N_2$ (eV)	$\frac{\Delta G_{*_{NH_2} - *_{NH_2} - *_{NH_2} - *_{NH_2}}{(eV)}$	$\frac{\Delta E_{ad}[N_2H]}{(\text{eV})}$	N≡N (Å)
Sc@g-C ₂ N	-0.403	-0.128	1.078	0.029	0.338	1.130
Ti@g-C ₂ N	-0.559	-0.155	0.797	-0.052	-0.128	1.136
V@g-C ₂ N	-0.310	0.182	0.946	-0.338	0.280	1.132
Cr@g-C ₂ N	-0.037	-0.037	1.168	-0.577	0.805	1.125
Mn@g-C ₂ N	-0.082	0.232	1.196	-0.870	0.765	1.123
Fe@g-C ₂ N	-0.460	0.068	1.357	-0.807	0.556	1.133
Co@g-C ₂ N	-0.595	-0.048	1.269	-0.993	0.282	1.132
Ni@g-C ₂ N	-0.283	/	1.258	-1.203	0.580	1.129
Cu@g-C ₂ N	-0.347	0.116	1.906	-1.526	1.221	1.123
Zn@g-C ₂ N	0.005	/	1.516	-1.182	1.190	1.116
Y@g-C ₂ N	-0.340	-0.115	1.127	0.162	0.474	1.130
Zr@g-C ₂ N	-0.807	-0.418	0.635	0.425	-0.538	1.142
Nb@g-C ₂ N	-0.659	-0.141	0.428	0.166	-0.622	1.145
Mo@g-C ₂ N	0.008	0.098	0.478	0.055	0.099	1.145
Ru@g-C ₂ N	-0.519	0.067	0.975	-0.588	0.061	1.139
Rh@g-C ₂ N	-0.163	/	1.313	-1.046	0.730	1.128
Pd@g-C ₂ N	0.070	/	1.327	-1.175	1.002	1.126
Ag@g-C ₂ N	0.276	/	2.071	-1.769	2.081	1.115

Table S1 $\Delta G_{*N_2}^{aend}$, $\Delta G_{*N_2}^{aend}$, $\Delta G_{*N_2}^{aend}$, $\Delta G_{*N_2}^{aend}$, $\Delta E_{ad}[N_2H]$ and $N \equiv N$ of 140 SACs.

*Corresponding authors. Tel.: +86 29 81530750, E-mail: huangyh@snnu.edu.cn (Y.H. Huang),

+86 29 82668610, E-mail: mafei@mail.xjtu.edu.cn (F. Ma).

Cd@g-C ₂ N	0.258	/	1.708	-1.063	1.631	1.113
Hf@g-C ₂ N	-0.744	-0.412	0.561	0.675	-0.545	1.145
Ta@g-C ₂ N	-0.813	-0.291	0.239	0.311	-0.963	1.150
W@g-C ₂ N	-0.650	-0.296	0.289	-0.047	-0.755	1.149
Re@g-C ₂ N	-0.952	-0.521	0.496	-0.214	-0.847	1.146
Os@g-C ₂ N	-0.684	0.045	0.784	-0.542	-0.331	1.139
Ir@g-C ₂ N	-0.472	/	1.045	-0.883	0.119	1.131
Pt@g-C ₂ N	-0.355	/	1.011	-0.844	0.235	1.130
Au@g-C ₂ N	/	/	/	/	/	/
Hg@g-C ₂ N	/	/	/	/	/	/
Sc@g-C ₃ N ₄	-0.473	-0.257	1.061	0.400	0.265	1.135
Ti@g-C ₃ N ₄	-0.570	-0.050	0.747	0.085	-0.187	1.140
V@g-C ₃ N ₄	-0.208	0.292	0.811	-0.146	0.232	1.137
Cr@g-C ₃ N ₄	0.101	/	1.181	-0.471	0.922	1.123
Mn@g-C ₃ N ₄	-0.005	0.251	1.270	-0.559	0.935	1.127
Fe@g-C ₃ N ₄	-0.535	-0.060	1.340	-0.359	0.431	1.137
Co@g-C ₃ N ₄	-0.567	-0.105	1.139	-0.672	0.177	1.135
Ni@g-C ₃ N ₄	-0.397	-0.395	1.144	-0.778	0.347	1.137
Cu@g-C ₃ N ₄	-0.519	/	2.001	-1.060	1.153	1.126
Zn@g-C ₃ N ₄	0.042	/	1.093	-0.277	0.772	1.117
Y@g-C ₃ N ₄	-0.329	-0.106	1.111	0.246	0.494	1.133
Zr@g-C ₃ N ₄	-0.607	-0.267	0.538	0.727	-0.425	1.147
Nb@g-C ₃ N ₄	-0.505	0.088	0.300	0.422	-0.581	1.153
Mo@g-C ₃ N ₄	-0.631	0.348	0.819	0.053	-0.200	1.149
Ru@g-C ₃ N ₄	-0.404	0.057	0.387	-0.388	-0.412	1.138
Rh@g-C ₃ N ₄	-0.950	-0.950	1.306	-0.960	-0.034	1.132
Pd@g-C ₃ N ₄	-0.288	/	1.400	-1.069	0.719	1.133
Ag@g-C ₃ N ₄	/	/	/	/	/	/
Cd@g-C ₃ N ₄	0.242	/	1.778	-0.567	1.628	1.113
Hf@g-C ₃ N ₄	-0.612	-0.290	0.456	0.880	-0.512	1.154
Ta@g-C ₃ N ₄	-0.654	-0.121	0.134	0.687	-0.895	1.157
W@g-C ₃ N ₄	-0.926	0.030	0.551	0.422	-0.769	1.155
Re@g-C ₃ N ₄	-0.563	-0.176	0.625	0.151	-0.306	1.149
Os@g-C ₃ N ₄	-0.726	0.004	0.817	-0.255	-0.340	1.143
Ir@g-C ₃ N ₄	-0.467	/	1.512	-0.688	0.623	1.135
Pt@g-C ₃ N ₄	/	/	/	/	/	/
Au@g-C ₃ N ₄	/	/	/	/	/	/
Hg@g-C ₃ N ₄	/	/	/	/	/	/
Sc@g-C ₄ N ₃	-0.144	/	1.708	-1.079	1.276	1.115
Ti@g-C ₄ N ₃	-0.166	0.217	0.938	-0.297	0.407	1.124
V@g-C ₄ N ₃	-0.234	0.740	0.935	-0.711	0.332	1.125
Cr@g-C ₄ N ₃	0.152	/	1.385	-1.020	1.140	1.117
Mn@g-C ₄ N ₃	0.121	/	1.677	-1.451	1.481	1.113

Fe@g-C ₄ N ₃	-0.135	/	1.307	-1.210	0.813	1.119
Co@g-C ₄ N ₃	-0.156	0.311	1.248	-1.317	0.683	1.124
Ni@g-C ₄ N ₃	0.050	/	1.442	-1.456	1.102	1.121
Cu@g-C ₄ N ₃	0.290	/	1.615	-1.575	1.500	1.120
Zn@g-C ₄ N ₃	0.310	/	2.155	-1.815	2.051	1.113
Y@g-C ₄ N ₃	-0.094	/	1.905	-1.399	1.529	1.114
Zr@g-C ₄ N ₃	-0.445	0.070	1.067	-0.065	0.287	1.124
Nb@g-C ₄ N ₃	-0.412	0.158	0.479	0.163	-0.299	1.137
Mo@g-C ₄ N ₃	-0.076	0.702	0.142	0.056	-0.331	1.141
Ru@g-C ₄ N ₃	-0.403	/	1.058	-0.920	0.281	1.134
Rh@g-C ₄ N ₃	0.176	/	0.902	-1.143	0.661	1.125
Pd@g-C ₄ N ₃	/	/	/	/	/	/
Ag@g-C ₄ N ₃	/	/	/	/	/	/
Cd@g-C ₄ N ₃	0.328	/	2.031	-2.137	2.081	1.113
Hf@g-C ₄ N ₃	-0.549	-0.003	0.973	0.026	0.073	1.127
Ta@g-C ₄ N ₃	-0.420	0.002	0.270	0.602	-0.515	1.145
W@g-C ₄ N ₃	-0.368	0.273	-0.117	0.150	-0.890	1.147
Re@g-C ₄ N ₃	-0.712	0.585	0.485	-0.148	-0.629	1.143
Os@g-C ₄ N ₃	-0.613	-0.613	0.890	-0.627	-0.106	1.138
Ir@g-C ₄ N ₃	-0.110	/	0.730	-0.992	0.193	1.131
Pt@g-C ₄ N ₃	/	/	/	/	/	/
$Au@g-C_4N_3$	/	/	/	/	/	/
Hg@g-C ₄ N ₃	/	/	/	/	/	/
$Sc@g-C_6N_6$	-0.362	-0.069	1.088	0.032	0.391	1.130
Ti@g-C ₆ N ₆	-0.556	-0.152	0.818	-0.044	-0.103	1.136
V@g-C ₆ N ₆	-0.329	0.289	0.910	-0.309	0.228	1.132
Cr@g-C ₆ N ₆	-0.035	/	1.094	-0.717	0.680	1.125
Mn@g-C ₆ N ₆	-0.014	0.305	1.226	-0.779	0.859	1.124
Fe@g-C ₆ N ₆	0.181	0.161	0.777	-1.116	0.579	1.136
$Co@g-C_6N_6$	-0.514	0.046	1.275	-0.891	0.367	1.133
Ni@g-C ₆ N ₆	-0.187	/	1.295	-1.189	0.712	1.129
$Cu@g-C_6N_6$	-0.287	/	1.790	-1.436	1.168	1.124
Zn@g-C ₆ N ₆	0.076	/	1.518	-1.073	1.262	1.115
Y@g-C ₆ N ₆	-0.298	-0.051	1.130	0.092	0.543	1.130
$Zr@g-C_6N_6$	-0.820	-0.447	0.637	0.334	-0.541	1.140
Nb@g-C ₆ N ₆	-0.795	-0.118	0.422	0.315	-0.770	1.145
Mo@g-C ₆ N ₆	-0.436	0.047	0.540	-0.195	-0.286	1.142
$Ru@g-C_6N_6$	-0.610	0.079	1.054	-0.671	0.037	1.136
Rh@g-C ₆ N ₆	-0.249	/	1.372	-1.168	0.699	1.127
Pd@g-C ₆ N ₆	0.046	/	1.414	-1.313	1.066	1.127
Ag@g-C ₆ N ₆	/	/	/	/	/	/
Cd@g-C ₆ N ₆	0.221	/	1.779	-1.023	1.673	1.113
Hf@g-C ₆ N ₆	-0.783	-0.452	0.588	0.564	-0.556	1.144

Ta@g-C ₆ N ₆	-0.869	-0.229	0.295	0.403	-0.975	1.148
W@g-C ₆ N ₆	-0.742	-0.323	0.311	0.013	-0.829	1.147
Re@g-C ₆ N ₆	-0.872	-0.370	0.507	0.020	-0.756	1.145
Os@g-C ₆ N ₆	-1.336	-0.583	0.858	-0.566	-0.906	1.138
Ir@g-C ₆ N ₆	-0.508	/	1.088	-0.943	0.129	1.130
Pt@g-C ₆ N ₆	/	/	/	/	/	/
Au@g-C ₆ N ₆	/	/	/	/	/	/
Hg@g-C ₆ N ₆	/	/	/	/	/	/
Sc@g-C ₉ N ₁₀	-0.378	-0.205	1.047	-0.253	0.333	1.129
Ti@g-C ₉ N ₁₀	-0.539	-0.093	0.727	-0.375	-0.191	1.136
V@g-C ₉ N ₁₀	-0.524	-0.017	0.895	-0.701	-0.011	1.126
Cr@g-C ₉ N ₁₀	-0.524	/	0.835	-0.946	-0.074	1.120
Mn@g-C ₉ N ₁₀	-0.26	/	0.685	-0.978	0.008	1.119
Fe@g-C ₉ N ₁₀	-0.488	-0.069	0.551	-0.908	-0.311	1.131
Co@g-C ₉ N ₁₀	-0.723	-0.025	0.751	-1.015	-0.373	1.124
Ni@g-C ₉ N ₁₀	-0.65	/	1.029	-1.320	-0.023	1.123
$Cu@g-C_9N_{10}$	-0.573	/	/	/	/	/
Zn@g-C ₉ N ₁₀	-0.299	/	0.962	-1.113	0.334	1.117
Y@g-C ₉ N ₁₀	-0.346	-0.189	1.096	-0.158	0.431	1.130
Zr@g-C ₉ N ₁₀	-0.532	-0.289	0.422	0.066	-0.487	1.144
Nb@g-C ₉ N ₁₀	-0.587	-0.344	0.410	-0.186	-0.569	1.144
Mo@g-C ₉ N ₁₀	-0.243	0.177	0.390	-1.057	-0.241	1.145
$Ru@g-C_9N_{10}$	-0.941	-0.250	0.849	-0.948	-0.495	1.128
Rh@g-C ₉ N ₁₀	-0.879	/	/	/	/	/
Pd@g-C ₉ N ₁₀	-0.438	/	1.338	-1.368	0.537	1.119
Ag@g-C ₉ N ₁₀	0.011	/	2.054	-1.973	1.753	1.115
Cd@g-C ₉ N ₁₀	0.027	/	1.765	-1.396	1.486	1.113
$Hf@g-C_9N_{10}$	-0.430	-0.243	0.367	0.058	-0.434	1.151
Ta@g-C ₉ N ₁₀	-0.673	-0.513	0.204	0.031	-0.857	1.150
W@g-C ₉ N ₁₀	-0.974	-0.335	0.273	-0.397	-1.138	1.132
Re@g-C ₉ N ₁₀	-1.035	-0.874	0.340	-0.299	-1.117	1.143
$Os@g-C_9N_{10}$	-1.182	-0.596	0.597	-0.802	-0.999	1.132
Ir@g-C ₉ N ₁₀	-1.270	/	0.631	-0.845	-1.084	1.127
Pt@g-C ₉ N ₁₀	/	/	/	/	/	/
Au@g-C ₉ N ₁₀	/	/	/	/	/	/
Hg@g-C ₉ N ₁₀	/	/	/	/	/	/

Table S2 The ΔG_{*N_2} and ΔG_{*H} values of SACs considered in the competitive reactions of

SACs	$\Delta G_{*_{N_2}}(\text{eV})$	$\Delta G_{*_{H}(eV)}$
Nb@g-C ₂ N	-0.659	-0.347
Ta@ g-C ₂ N	-0.813	-0.671
W@g-C ₂ N	-0.650	-0.540
Re@g-C ₂ N	-0.952	-0.771
Nb@g-C ₃ N ₄	-0.505	-0.297
Ru@g-C ₃ N ₄	-0.404	-1.023
Ta@g-C ₃ N ₄	-0.654	-0.562
Nb@g-C ₄ N ₃	-0.412	-0.285
Mo@g-C ₄ N ₃	-0.076	-0.339
Ta@g-C ₄ N ₃	-0.420	-0.617
W@g-C ₄ N ₃	-0.368	-0.456
Re@g-C ₄ N ₃	-0.712	-0.563
Nb@g-C ₆ N ₆	-0.795	-0.448
Mo@g-C ₆ N ₆	-0.436	-0.226
Ta@g-C ₆ N ₆	-0.869	-0.690
W@g-C ₆ N ₆	-0.742	-0.698
Re@g-C ₆ N ₆	-0.872	-0.767
$Zr@g-C_9N_{10}$	-0.532	-0.482
Nb@g-C ₉ N ₁₀	-0.587	-0.362
Mo@g-C ₉ N ₁₀	-0.243	-0.163
$Hf@g-C_9N_{10}$	-0.430	-0.641
$Ta@g-C_9N_{10}$	-0.673	-0.632
W@g-C ₉ N ₁₀	-0.974	-0.539
$Re@g-C_9N_{10}$	-1.035	-0.651

HER and NRR.

Table S3 Intrinsic properties of catalysts and adsorption intermediates.

category	feature	symbol
	1st ionization energy	I_1
	number of outermost d electrons	N _d
center metals	atomic number	Ζ
	unpaired d-electron number	N_{ie-d}
	Pauling electronegativity	χ
acordination	number of N atoms	N_N
	number of C atoms	N_C
environments	number of coordinative N atoms	N _n
internet distant (*NI)	N≡N bond length	$N \equiv N$
intermediates $(*N_2)$	TM-N bond length	TM-N

Fig. S1 The ROC curves of the DNN, XGBoost, decision tree and SVM classification models.

Fig. S2 DNN classification model constructed in this study (each hidden layer has ten neurons), with input data consisting of optimized adsorbed nitrogen intermediates, each structure has ten features:

Fig. S3 Changes in training loss and validation loss during the training epochs in the DNN model.

Fig. S4 Comparison of prediction results between DFT calculations and linear regression model.

Fig. S5 Comparison of prediction results between DFT calculations and random forest regression

model.

Fig. S6 Comparison of prediction results between DFT calculations and decision tree regression

model.

Fig. S7 Comparison of prediction results between DFT calculations and K-Nearest neighbors regression model.

Fig. S8 Comparison of prediction results between DFT calculations and DNN regression model. Table S4 20 types of SACs that meet the screening criteria under the N_2 configuration of N=N,

SACs	N≡N (Å)	$\Delta E_{ad}[N_2H]_{(eV)}$	N _d	PDS	U _L (V)
Nb@g-C ₂ N	1.145	-0.622	4	*N ₂ +H→*N ₂ H	0.43
Ta@g-C ₂ N	1.150	-0.963	3	*NH ₂ +H→*NH ₃	0.31
W@g-C ₂ N	1.149	-0.755	4	*N ₂ +H→*N ₂ H	0.29
Re@g-C ₂ N	1.146	-0.847	5	*N ₂ +H→*N ₂ H	0.50
Nb@g-C ₃ N ₄	1.153	-0.581	4	*NH ₂ +H→*NH ₃	0.42
Ta@g-C ₃ N ₄	1.157	-0.895	3	*NH ₂ +H→*NH ₃	0.69
Nb@g-C ₄ N ₃	1.137	-0.299	4	*N ₂ +H→*N ₂ H	0.48
Mo@g-C ₄ N ₃	1.141	-0.331	5	*N+H→*NH	0.34
Re@g-C ₄ N ₃	1.143	-0.629	5	*N+H→*NH	0.61
Nb@g-C ₆ N ₆	1.145	-0.770	4	*N ₂ +H→*N ₂ H	0.42
Mo@g-C ₆ N ₆	1.142	-0.286	5	*N ₂ +H→*N ₂ H	0.54
Ta@g-C ₆ N ₆	1.148	-0.975	3	*N ₂ +H→*N ₂ H	0.40
W@g-C ₆ N ₆	1.147	-0.829	4	*N ₂ +H→*N ₂ H	0.31
Re@g-C ₆ N ₆	1.145	-0.756	5	*N ₂ +H→*N ₂ H	0.51

 $\Delta E_{ad}[N_2H]$, N_d, PDS and U_L.

Zr@g-C ₉ N ₁₀	1.144	-0.487	2	*N ₂ +H→*N ₂ H	0.43
Nb@g-C ₉ N ₁₀	1.144	-0.569	4	*N ₂ +H→*N ₂ H	0.41
Mo@g-C ₉ N ₁₀	1.145	-0.241	5	*N ₂ +H→*N ₂ H	0.39
Ta@g-C ₉ N ₁₀	1.150	-0.857	3	*N ₂ +H→*N ₂ H	0.20
W@g-C ₉ N ₁₀	1.132	-1.138	4	*N ₂ +H→*N ₂ H	0.27
Re@g-C ₉ N ₁₀	1.143	-1.117	5	*N ₂ +H→*N ₂ H	0.34

48

*NH

(c)

0

-1

(^-2 9) 00 −3

0.00

• U=0.00 V

U=-0.31 V

*NNH *NNHH *N

 $*N_2$

-2.13

-3.99

*NH3

Fig. S9 Gibbs free energy change diagram of Nb, Ta, W, Re@g-C₂N along the distal pathway

under (a, c, e, g) vacuum and (b, d, f, h) implicit solvation.

Fig. S10 Gibbs free energy change diagram of Nb, Ta@g-C₃N₄ along distal pathway under (a, c) vacuum and (b, d) implicit solvation.

Fig. S11 Gibbs free energy change diagram of Nb, Mo@g-C₄N₃ along the distal pathway under (a, c) vacuum and (b, d) implicit solvation.

Fig. S12 Gibbs free energy change diagram of Nb, Mo, Ta, W, $Re@g-C_6N_6$ along the distal

pathway under (a, c, e, g, i) vacuum and (b, d, f, h, j) implicit solvation.

Fig. S13 Gibbs free energy change diagram of Nb, Mo, Ta, W, Re@g-C₉N₁₀ along distal pathway under (a, c, e, g, i) vacuum and (b, d, f, h, j) implicit solvation.

Fig. S14 N₂ is physically adsorbed onto Zr@g-C₉N₁₀ under implicit solvation conditions.