Electronic Supplementary Information

Enhancement of ionic conductivity in Li argyrodite solid electrolytes with bromide and borohydride anions for all-solidstate batteries

Hyungeun Seo,^a Yong-Jin Jang,^a Jaeseong Yoo,^a Ji-Hoon Han,^{bc} Young-Su Lee,^b

Jae Yup Jung,^d Soeun Lee,^d Kyung-Woo Yi,^c Young Whan Cho,^b Woosuk Cho*^d and Jae-Hun Kim*^a

^aSchool of Materials Science and Engineering, Kookmin University, Seoul 02707, Republic of Korea. E-mail: jaehunkim@kookmin.ac.kr (J.-H. Kim)

^bEnergy Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea

^cDepartment of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea

^dAdvanced Batteries Research Center, Korea Electronics Technology Institute, Seongnam, Gyeonggi 13509, Republic of Korea. E-mail: cho4153@keti.re.kr (W. Cho)

Fig. S1. Enlarged XRD patterns of the prepared solid electrolytes with the composition of $Li_3PS_4 \cdot (2.5-x)LiBH_4 \cdot xLiBr$.

Atom	Site	Beq	U _{iso}
Li	48h(T5)	5.8	0.073458
Р	4b	2.06	0.02609
S	16e	2.64	0.033436
S	4d	2.31	0.029256
В	4d	2.31	0.029256
Br	4d	2.31	0.029256
S	4a	3.02	0.038249
В	4a	3.02	0.038249
Br	4a	3.02	0.038249
H(B@4d)	16e	2.31	0.029256
H(B@4d)	16e	2.31	0.029256
H(B@4a)	16e	3.02	0.038249
H(B@4a)	16e	3.02	0.038249

Table S1. Isotropic temperature factor (B_{eq}) and isotropic displacement parameter (U_{iso}) for the Rietveld refinement of the prepared solid electrolyte sample (Li₃PS₄·2LiBH₄·0.5LiBr). (B_{eq} = $8\pi^2$ U_{iso})

Rietveld refinement was performed using TOPAS v.5 software (Bruker AXS) over the 2θ range of 10° – 70° . Because the limited quality of the XRD data did not allow us to refine the position of H in BH₄⁻, the B–H bond length was fixed to 1.1 Å, the usual bond length of B–H obtained from XRD. Within the symmetry of F–43m, there are two possible orientations of BH₄⁻, and we assumed an equal occupancy for the two orientations.

Fig. S2. (a) ¹¹B and (b) ⁷Li solid-state MAS NMR spectra of the prepared solid electrolyte samples with the composition of $Li_3PS_4 \cdot (2.5-x)LiBH_4 \cdot xLiBr$.

For the ⁷Li solid-state MAS NMR spectra of the x = 0.5 sample (Li₃PS₄·2LiBH₄·0.5LiBr), the main peak is observed at 0.4 ppm, which is in good agreement with the previous report. When the *x* value increases, the main peak position of the solid electrolyte samples shifts toward a higher frequency. This trend is observed as the amount of LiBH₄ in the argyrodite samples decreases. In the x = 2.5 sample (Li₃PS₄·2.5LiBr), a peak at approximately –2.0 ppm is observed, attributed to the unreacted LiBr. This result is consistent with the XRD results. Moreover, when LiBr is added, as indicated by the XRD results, it increases the degree of crystallinity, which can sharpen the peaks in the ⁷Li solid-state MAS NMR spectra. However, when more than 1 equivalent of LiBr is added, unreacted LiBr appears, causing an uneven local magnetic field around the Li ions, which can broaden the NMR peaks.

Fig. S3. FE-SEM images of the prepared solid electrolyte sample (Li₃PS₄·2LiBH₄·0.5LiBr) at different magnifications.

Fig. S4. (a) FE-SEM and (b–d) EDS elemental mapping images of the prepared solid electrolyte sample ($Li_3PS_4 \cdot 2LiBH_4 \cdot 0.5LiBr$).

Fig. S5. Nyquist plots of the cells including the prepared solid electrolytes with the composition of Li_3PS_4 ·(2.5–*x*)LiBH₄·*x*LiBr (*x* = 0.6, 0.7, 0.8, and 0.9).

x	Composition	Ionic conductivity (mS cm ⁻¹ at 25°C)
0.6	Li ₃ PS ₄ ·1.9LiBH ₄ ·0.6LiBr	13.7
0.7	Li ₃ PS ₄ ·1.8LiBH ₄ ·0.7LiBr	14.4
0.8	Li ₃ PS ₄ ·1.7LiBH ₄ ·0.8LiBr	12.9
0.9	Li ₃ PS ₄ ·1.6LiBH ₄ ·0.9LiBr	10.3

Table S2. Ionic conductivities of the prepared solid electrolyte samples.

Fig. S6. DC polarization profiles of the prepared solid electrolyte samples with the composition of $Li_3PS_4 \cdot (2.5-x)LiBH_4 \cdot xLiBr$.

The resistance R is obtained from the measured DC polarization plot, and the conductivity of the samples can be calculated using the equation:

$$\sigma = \frac{t}{RA}$$

where t is the thickness of the sample and A is its area.

Table S3. Electronic conductivities of the prepared solid electrolyte samples with the composition of $Li_3PS_4 \cdot (2.5-x)LiBH_4 \cdot xLiBr$.

x	Composition	Electronic conductivity
	Composition	(mS cm ^{-1} at 25°C)
0	Li ₃ PS ₄ ·2.5 LiBH ₄	$8.8 imes 10^{-5}$
0.5	Li ₃ PS ₄ ·2LiBH ₄ ·0.5LiBr	$9.2 imes 10^{-5}$
1	$Li_3PS_4 \cdot 1.5LiBH_4 \cdot 1LiBr$	$7.4 imes 10^{-5}$
1.5	Li ₃ PS ₄ ·1LiBH ₄ ·1.5LiBr	$3.7 imes 10^{-5}$
2	$Li_3PS_4{\cdot}0.5LiBH_4{\cdot}2LiBr$	3.1×10^{-5}
2.5	$Li_3PS_4 \cdot 2.5LiBr$	1.5×10^{-5}

Table S4. Activation energy of the prepared solid electrolyte samples with the composition of $Li_3PS_4 \cdot (2.5-x)LiBH_4 \cdot xLiBr$. The activation energy errors across several trials are within ± 0.5 kJ mol⁻¹.

x	Composition	Activation energy (kJ mol ⁻¹)
0.5	Li ₃ PS ₄ ·2LiBH ₄ ·0.5LiBr	28.8
1	Li ₃ PS ₄ ·1.5LiBH ₄ ·1LiBr	29.6
1.5	Li ₃ PS ₄ ·1LiBH ₄ ·1.5LiBr	29.8
2	Li ₃ PS ₄ ·0.5LiBH ₄ ·2LiBr	32.8
2.5	Li ₃ PS ₄ ·2.5LiBr	29.2

Fig. S7. Temperature dependence of ionic conductivities shown by the prepared solid electrolyte samples with the composition of $Li_3PS_4 \cdot (2.5-x)LiBH_4 \cdot xLiBr$.

Table S5. Activation energy of the prepared solid electrolyte samples with the composition of $Li_3PS_4 \cdot (2.5-x)LiBH_4 \cdot xLiBr$.

x	Composition	Activation energy (kJ mol ⁻¹)
0.6	Li ₃ PS ₄ ·1.9LiBH ₄ ·0.6LiBr	28.3
0.7	Li ₃ PS ₄ ·1.8LiBH ₄ ·0.7LiBr	27.9
0.8	Li ₃ PS ₄ ·1.7LiBH ₄ ·0.8LiBr	28.3
0.9	Li3PS4·1.6LiBH4·0.9LiBr	28.9

Fig. S8. CV curves of the Li/solid electrolyte/solid electrolyte-conductive carbon/SS cell measured at a scan rate of 1 mV cm^{-1} .

Fig. S9. Voltage profiles of the Li metal symmetric cells including the prepared solid electrolytes: (a) $Li_3PS_4 \cdot 2.5LiBH_4$ and (b) $Li_3PS_4 \cdot 2LiBH_4 \cdot 0.5LiBr$.

Fig. S10. Critical current density profiles using the time-constant mode: (a) $Li_3PS_4 \cdot 2.5LiBH_4$ and (b) $Li_3PS_4 \cdot 2LiBH_4 \cdot 0.5LiBr$.