Dual network structures of PDMS based composite foam *via* anchoring liquid metal nanoparticles for improve thermal conductivity and electromagnetic interference shielding performances

Ying Zhang, Song Yang, Yilin Liu, Ting Gu*, Fei Liu*

Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China

Fig. S1 XPS spectra of neat PDMS, PDMSGNPs_{0.24}, and PDMS/GNPs_{0.24}@LM_{22.1} foam.

Fig. S2 SEM images of PDMS/GNPs_{0.24}@LM_{22.1} foam.

^{*} Corresponding author:

E-mail: tgu@gzu.edu.cn (T. Gu), ce.feiliu@gzu.edu.cn (F. Liu)

Sample	Filler content (vol%)	Thermal		
		conductivity (W/m ⁻	φ	ref
		¹ K ⁻¹)		
EP/f-Al ₂ O ₃	26.8	2.44	1184	15
3D-BN-C/EP	27.79	1.223	561	16
3D-OH-BN/EP	17.3	2.073	897	17
Ag-BNNS/AgNW/epoxy	27.08	0.804	136	18
3D-BN/PDMS	18.87	1.868	899	19
BN@UHMWPE	29.3	1.9	296	20
rGO@Al2O3/NR	18	0.514	206	21
EP/3D-BN	20.62	~0.55	206	22
h-BN/EP	23.78	~1.1	322	23
PDMS/GNPs@LM	22.34	0.74	1130	This work

Table S1 The detailed information is listed of the thermal conductivity and corresponding thermal conductivity enhancement efficiency with a 3D network structure composite materials.

Table S2 The detailed information is listed of the thermal conductivity and corresponding thermal

 conductivity enhancement efficiency with PDMS-based composite materials.

Sample	Filler content	Thermal		
	rmer content (vol%)	conductivity (W/m ⁻	φ	ref
		¹ K ⁻¹)		
m-BN@Al ₂ O ₃ /PDMS	60	2.23	1015	24
h-BN@(Ag/Cu)/PDMS	25	1.5645	682	25
BN@AgNWs/PDMS	20	0.914	480	26
MgO/PDMS	11.68	1.2	700	27
GO/MWCNT/PDMS	6	1.52	744	28
FPB/PDMS	3.8	0.7	367	29
MGF/GF/PDMS	2.7	1.08	440	30
Al ₂ O ₃ -ZnO/PDMS	40	1.185	577	31

3D-BN/PDMS	18.83	1.868	899	19
PDMS/GNPs@LM	22.34	0.74	1130	This work

Supplementary method-Finite Element Model

The heat transfer processes of the samples were modeled using COMSOL Multiphysics 5.6. Three of composite foams, consisting of pure PDMS, PDMS/GNPs_{0.24}, types and PDMS/GNPs_{0.24}@LM_{22.1}, were modeled with TC values set to 0.06, 0.3, and 0.74 W/m⁻¹K⁻¹, respectively. A transient-state finite element methodology was established, where the temperature at the bottom was fixed at 100°C, while all other external boundaries were fully insulated and had initial values set to room temperature (20°C). Based on experience, the convective heat flux was set to W/m⁻¹K⁻¹, and the ambient temperature and atmospheric pressure were set to 23°C and 1 atm, respectively. The rectangular model had dimensions of 31.2 cm \times 21 cm.

Fig. S3 Schematic of the boundary conditions for the simulation model.

Sample	Thickness	EMI SE (dB)	Normalized SE (dB	ref	
Sumpre	(mm)	Lini SL (ub)	mm ⁻¹)	1.01	
PF/Fe ₃ O ₄ @PPy	8	41.1	5.14	35	
Epoxy/p-GA	2	35	17.50	36	
PS/MWCNT	1.8	23.2	12.89	37	
EHP/f-NCB/AgNS	3	49.7	16.57	38	
MP@Ag/CW	4	47.1	11.78	39	
AgFe-MF	5	69.61	13.92	40	
LM/elastomer	10	70.5	7.05	14	
Ni/rGO	4.5	53.11	11.80	21	
CNT-Matrix/Cellulose	2.5	40	16.00	41	
PDMS/GNPs@LM	2.16	40.81	18.89	this work	

Table S3 The detailed information is listed of the SE/t values with 3D structure composite materials.