Electronic Supplementary Information

Surface Protonic Conduction in Porous Alkaline Earth Zirconate Perovskites CaZrO₃, SrZrO₃, and BaZrO₃

Jie Gu¹, Xinwei Sun², Lulu Jiang¹, Zihan Zhang¹, Truls Norby^{1,2*}, Donglin Han^{1,3,4,5*}

¹ College of Energy, Soochow University, No 1 Shizi Street, Gusu District, Suzhou 215006, China

² Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Gaustadalléen 21, NO-0349 Oslo, Norway

³ Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, No 1 Shizi Street, Gusu District, Suzhou 215006, China

⁴ Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou
215123, China

⁵ Light Industry Institute of Electrochemical Power Sources, Shahu Science & Technology Innovation Park, Suzhou 215638, China

* Corresponding authors:

Truls Norby (truls.norby@kjemi.uio.no)

Donglin Han (dlhan@suda.edu.cn)

1. XRD analysis

Fig. S1 Room temperature powder XRD patterns of SrZrO₃ sintered at 1100, 1200, 1300, and 1350 °C for 24 h in ambient air.

Fig. S2 Room temperature powder XRD patterns of CaZrO₃, SrZrO₃, and BaZrO₃ sintered at 1300 °C for 24 h in ambient air.

Fig. S3 Room temperature powder XRD patterns of $Ba_{0.95}ZrO_{3-\delta}$, $Ba_{0.97}ZrO_{3-\delta}$, and $BaZrO_3$ sintered at 1300 °C for 24 h in ambient air.

2. XPS analysis

Fig. S4 Sr 3d XPS spectra of SrZrO₃ sintered at (a) 1100 °C, (b) 1200 °C, (c) 1300 °C, and (d) 1350 °C in ambient air.

3. Conductivity

Fig. S5 (a) Total conductivities and (b) surface protonic conductance of the porous samples of $Ba_{0.95}ZrO_{3-\delta}$, $Ba_{0.97}ZrO_{3-\delta}$ and $BaZrO_3$ in dry and wet (${}^{P_{H_2O}} = 0.04$ atm) Ar atmospheres. All the samples were sintered at 1300 °C for 24 h in ambient air.

Fig. S6 (a) Total conductivities of SrZrO₃ (sintered at 1100, 1200, 1300 and 1350 °C) in dry and wet (${}^{p}_{\rm H_2O} = 0.04$ atm) Ar atmospheres, and (b) surface protonic conductivity after subtraction of the dry conductivities.

Fig. S7 (a) XRD pattern and SEM image, and (b) total conductivities measured in dry and wet (${}^{P_{H_2O}} = 0.03 \text{ atm}$) of Ba_{0.97}ZrO_{3- δ} with relative density above 90% obtained by sintering at 1650 °C for 24 h. During the sintering process, the sample was covered with as-synthesized Ba_{0.97}ZrO_{3- δ} powder to prevent evaporation of BaO.

Table S1 Derived ${}^{p_{H_2O}}$ dependences and predicted preexponentials of surface protonic conductance within the chemisorbed water layer at ${}^{p_{H_2O}}$ = 1 and 0.04 atm according to four models of dissociation and transport in cases of low coverage (Sun *et al.*, *Appl. Surf. Sci.*, 2023, **611**, 155590), for which molecular or dissociated chemisorption have the same parameters. Also included are predictions for full coverage, where there are no

 $p_{\rm H_2O}$ dependences, but differences between molecular or dissociated dominance. The predicted preexponentials are calculated based on a rough estimate of density of surface adsorption sites (i.e., terminating cations) and oxygen-oxygen distance for proton jumps that should be equally valid for perovskites as for binary oxides.

Model Parameter	cms-s cds-s	cms-sa cds-sa	cms-a cds-a	cma-a	cms-s	cds-s	cms-sa	cds-sa	cms-a	cds-a	cma-a
$n \text{ in } G_{\mathrm{s},\mathrm{H}^{+}\mathrm{O}} \propto p_{\mathrm{H}_{2}\mathrm{O}}^{n}$	1/2	1	3/2	2	0 (full coverage)						
$G^{0}_{s,H^{+}0}$ (SK), $p_{H_{2}O} = 1$ atm	2×10-6	3×10-9	3×10 ⁻¹²	6×10 ⁻¹⁵	1×10-3	4×10 ⁻⁴	1.5×10 ⁻³	8×10-4	1×10-3	8×10-4	1.5×10 ⁻³
$G_{\rm s,H^+0}(\rm SK), p_{\rm H_2O} = 0.04 atm$	4×10-7	1×10 ⁻¹⁰	4×10 ⁻¹³	1×10 ⁻¹⁹	1×10-3	4×10-4	1.5×10-3	8×10-4	1×10-3	8×10-4	1.5×10 ⁻³

Table S2 Experimental preexponentials of surface protonic conductance within the chemisorbed water layer and the physisorbed layer at ${}^{P_{H_2O}} = 0.04$ atm.

Conditions	Type of	Sample	SZO-	SZO-	SZO-	SZO-	CZO-	BZ0-	Ba _{0.97} ZrO _{3-δ} -	Ba _{0.95} ZrO _{3-δ} -	
	conduction	Parameter	1100	1200	1300	1350	1300	1300	1300	1300	
High <i>T</i> , wet	chemisorbed	G_0 / SK	5×10-4	2×10-3	5×10-2	2×10-2	4×10 ⁻¹	6×10-4	6×10-5	2×10-3	
Low <i>T</i> , wet	1 st physisorbed	G_0 / SK	10-21				-	10-22	10-21		