Electronic Supplementary Information

Continuous Porous Porphyrinic Polymer Thin-Film Composite

Membrane for Anti-biofouling and Molecular Sieving

Jia Xu,*^a Hansi Zhang,^a Xiaolong Ren,^a Shiyi Yao^a, Wenhua Fan^a Ayman Nafady,^c Abdullah M. Al-Enizi,^c Shengqian Ma*^b

a. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of

Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100, China. E-mail: qdxujia@sina.com.cn.

 b. Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, USA. E-mail: Shengqian.Ma@unt.edu.

c. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

Data Availability Statements

Table S1: Water permeance of TAPP_n-TPC/PAN at different TAPP concentrations.

Table S2: A_P of TAPP_n-TPC/PAN at different TAPP concentrations.

Table S3: RB rejection of TAPP_n-TPC/PAN at different TAPP concentrations.

Table S4: Comparison of dye rejection performance between the membrane prepared

 in this study and previously reported membranes

Table S5: Comparison of antibacterial performance between the membrane prepared
 in this study and previously reported membranes

Data Availability Statements:

In order to study the performance of the membrane, the water permeance and Rose Bengal(RB) rejection rate of the membrane were measured. At least three membrane samples of the same specifications were measured in parallel, and each sample was tested continuously for three cycles. The average data of the three samples in each cycle is shown in the table below.

Table S1 shows the water permeance of $TAPP_n$ -TPC/PAN at different TAPP concentrations. Table S2 shows the absorption of the permeate solutions (A_P) of TAPP_n-TPC/PAN at different TAPP concentrations. The maximum absorption wavelength of RB exists at 552nm, and the concentration of RB in feed solutions (C_F) is fixed at 20 mg L⁻¹, when the RB rejection is determined, and the absorption of RB in the feed solutions (A_F) at 552 nm is 0.76. Table S3 shows the RB rejection of TAPPn-TPC/PAN at different TAPP concentrations. The RB rejection is calculated from the rate of change in the concentration of RB in the feed solutions and in the permeate solutions, where the concentration in the permeate solutions (C_P) is calculated from the absorption of the measured RB at 552 nm in the permeate solutions.

Performance	Water permeance (P, L m ⁻² h ⁻¹ bar ⁻¹)					
Membrane	Cycle 1	Cycle 2	Cycle 3	Mean		
TAPP _{2.4} -TPC/PAN	13.29	13.26	13.20	13.25		
TAPP _{2.8} -TPC/PAN	11.63	11.66	11.65	11.65		
TAPP _{3.2} -TPC/PAN	9.18	9.26	9.16	9.20		
TAPP _{3.6} -TPC/PAN	8.82	8.80	8.80	8.81		
TAPP _{4.0} -TPC/PAN	8.24	8.27	8.22	8.24		
TAPP _{4.4} -TPC/PAN	5.43	5.48	5.41	5.44		

Table S1. Water permeance of TAPP_n-TPC/PAN at different TAPP concentrations

Table S2. A_P of TAPP_n-TPC/PAN at different TAPP concentrations

Absorption	Absorption of the permeate solutions (A _P)					
Membrane	Cycle 1	Cycle 2	Cycle 3	Mean		
TAPP _{2.4} -TPC/PAN	0.0320	0.0318	0.0317	0.0319		
TAPP _{2.8} -TPC/PAN	0.0160	0.0159	0.0162	0.0160		
TAPP _{3.2} -TPC/PAN	0.0135	0.0132	0.0131	0.0133		
TAPP _{3.6} -TPC/PAN	0.0095	0.0093	0.0092	0.0093		
TAPP _{4.0} -TPC/PAN	0.0040	0.0038	0.0036	0.0038		
TAPP _{4.4} -TPC/PAN	0.0087	0.0088	0.0089	0.0088		

Table S3. RB rejection of TAPP_n-TPC/PAN at different TAPP concentrations

	Concent	RB			
Membrane		Rejection			
	Cycle 1	Cycle 2	Cycle 3	Mean	(%)
TAPP _{2.4} -TPC/PAN	0.842	0.837	0.834	0.838	95.81
TAPP _{2.8} -TPC/PAN	0.421	0.418	0.426	0.422	97.89
TAPP _{3.2} -TPC/PAN	0.355	0.347	0.345	0.349	98.25
TAPP _{3.6} -TPC/PAN	0.250	0.245	0.242	0.246	98.77
TAPP _{4.0} -TPC/PAN	0.105	0.100	0.095	0.100	99.50
TAPP _{4.4} -TPC/PAN	0.229	0.232	0.234	0.232	98.84

Membrane	Dve	Dve Molecular	Rejection	Ref.
		Weight	(%)	
		(g mol ⁻¹)		
TMC-MPD	Rose Bengal	1018	99.0	1
TMC-PPD	Rose Bengal	1018	97.5	
S-rGO	Direct Red 80	1373	99.0	2
rGO/S-GO	Methylene Blue	320	99.5	3
	Direct Red 80	1373	98.8	
P-rGO/ZnO	Uniblue A	506	89±2.6	4
	Methylene Blue	320	60±2.4	
(FPA/PI) _{XA}	Rhodamine B	479	99.4	5
	Rose Bengal	1018	99.7	
TAPP _{4.0} -	Rose Bengal	1018	99.5	This
TPC/PAN	Chromotrope FB	502	36.3	work
	Methylene Blue	320	0	

Table S4. Comparison of dye rejection performance between the membrane prepared

 in this study and previously reported membranes

 Table S5. Comparison of antibacterial performance between the membrane prepared

in	this	study	and	previous	ly	reported	mem	branes
		2		1	~	1		

Membrane	Antibacterial efficiency (Eb)		
1 wt% NBNPs/PES	88.0% and 90.0% Eb against E. coli and S.		
	aureus cells, respectively, after 12 h contact		
GOQDs/PVDF	88.9% and 77.9% Eb against E. coli and S.	7	
	aureus cells, respectively, after 1 h contact		
GO-Ag/CA	86% Eb against E. coli after 2 h contact	8	
PDA-rGOC3/ HPAN	97.9% Eb against E. coli after 3 h contact	9	
BAIE-TMC	98.5 % and 98.4 % Eb against E. coli and S.	10	
	aureus cells, respectively, after 48 h contact		
PSf/PDA-AM	98.5 % and 98.4 % Eb against E. coli and S.	11	
	aureus cells, respectively, after 24 h contact		
TAPP _{4.0} -TPC/PAN	99.3% and 85.9% Eb against E. coli and S.	This	
	aureus cells, respectively, after 0.5 h contact	work	

Reference:

- 1. E. Maaskant, W. Vogel, T. J. Dingemans and N. E. Benes, *Journal of Membrane Science*, 2018, **567**, 321-328.
- 2. L. Huang, S. Huang, S. R. Venna and H. Lin, *Environmental Science and Technology*, 2018, **52**, 12649-12655.
- 3. Peng, Zhang, Ji-Lai, Gong, Guang-Ming, Zeng, Biao, Song and Siyuan, *Separation & Purification Technology*, 2019.
- 4. N. A. Mazlan, A. Lewis, Z. Chen, F. S. Butt, J. Han, N. Radacsi, S. Yang and Y. Huang, *Journal of Membrane Science*, 2024, **697**, 122539.
- 5. Y. Guo, S. Li, B. Su and B. Mandal, *Chemical Engineering Journal*, 2019, **369**, 498-510.
- S. Dadari, M. Rahimi and S. Zinadini, *Chemical Engineering Journal*, 2022, 431, 134116.
- 7. Z. Zeng, D. Yu, Z. He, J. Liu, F. X. Xiao, Y. Zhang, R. Wang, D. Bhattacharyya and T. T. Y. Tan, *Scientific Reports*, 2016, **6**, 20142.
- 8. *Chemical Engineering Journal*, 2015, **281**, 53-59.
- 9. J. Zhu, J. Wang, A. A. Uliana, M. Tian, Y. Zhang, Y. Zhang, A. Volodin, K. Simoens, S. Yuan and J. Li, *Acs Applied Materials & Interfaces*, 2017, 28990.
- 10. H. Chen, F. Zhao, X. Zhang, H.-D. Park, Z. Li and L. Yang, *Journal of Membrane Science*, 2024, **707**, 122992.
- L. Xu, Z. Pang, H. Yu, M. Guo, X. Yan, X. Jiang and L. Yu, *Desalination*, 2023, 565, 116809.