Ultra-Wide Temperature Cycle Control Based on Photo-responsive

Phase-Change

Jing Ge, ^a Xiaoyu Yang, ^a Zedong Wang, ^a Yiyu Feng, ^{*a} Wei Feng ^{*a}

^aSchool of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China.

*Corresponding author E-mail:

fengyiyu@tju.edu.cn (Y. Feng)

weifeng@tju.edu.cn (W. Feng)

Supplementary Figures and Results

Fig. S1 TGA curves of BN-PVA, BN-PVA/Azo-OC10, and Azo-OC10 (10 $^{\circ}\text{C/min},$ N $_2$ atmosphere).

Fig. S2 XRD comparison of (a) Azo-OC6, BN-PVA aerogel, and BN-PVA/Azo-OC6 composite aerogel; (b) Azo-OC8, BN-PVA aerogel, and BN-PVA/Azo-OC8 composite aerogel; and (c) Azo-OC12, BN-PVA aerogel, and BN-PVA/Azo-OC12 composite aerogel at 2θ ranging from 5° to 45°. (d) XRD curves of BN-PVA/Azo-OCn composite aerogels filled with Azo-OCn molecules of different chain lengths (n=6, 8, 10, 12).

Fig. S3 (a) The wide-scan, N1s, O 1s, B 1s, and C1s core-level XPS spectra of BN-PVA, Azo-OC10, and BN-PVA/Azo-OC10 aerogel samples. (b) N 1s, (c) C 1s, (d) B 1s, and (e) O 1s region spectra of the BN-PVA aerogel.

Fig. S4 O 1s XPS spectra of (a) BN-PVA/Azo-OC6, (b) BN-PVA/Azo-OC8, (c) BN-PVA/Azo-OC10, and (d) BN-PVA/Azo-OC12.

Fig. S5 B 1s XPS spectra of (a) BN-PVA/Azo-OC6, (b) BN-PVA/Azo-OC8, (c) BN-PVA/Azo-OC10, and (d) BN-PVA/Azo-OC12.

Fig. S6 C 1s XPS spectra of (a) BN-PVA/Azo-OC6, (b) BN-PVA/Azo-OC8, (c) BN-PVA/Azo-OC10, and (d) BN-PVA/Azo-OC12.

Fig. S7 N 1s XPS spectra of (a) BN-PVA/Azo-OC6, (b) BN-PVA/Azo-OC8, (c) BN-PVA/Azo-OC10, and (d) BN-PVA/Azo-OC12.

Fig. S8 (a) Composition contents of BN-PVA and BN-PVA/Azo-OCn (n = 6, 8, 10, 12)

aerogels from the XPS spectra. (b) EDS results of BN-PVA and BN-PVA/Azo-OC10. (c) The EDS mapping of the BN-PVA/Azo-OC10 composite aerogel.

Fig. S9 Schematic illustration of the attachment state of water droplets to BN-PVA aerogel at t=0s.

Fig. S10 The pore size distribution of BN-PVA.

Fig. S11 Time-evolved UV-vis absorption spectra of BN-PVA/Azo-OC6 under (a) UV light irradiation, (b) light at RT (25.7 °C), (c) light at low temperature LT (-20 °C), and (d) dark environment at LT (-20 °C).

Fig. S12 Time-evolved UV-vis absorption spectra of BN-PVA/Azo-OC8 under (a) UV light irradiation, (b) light at RT (25.7 °C), (c) light at low temperature LT (-20 °C), and (d) dark environment at LT (-20 °C).

Fig. S13 Time-evolved UV-vis absorption spectra of BN-PVA/Azo-OC12 under (a) UV light irradiation, (b) light at RT (25.7 °C), (c) light at low temperature LT (-20 °C), and (d) dark environment at LT (-20 °C).

Fig. S14 (a)-(c) The *Z*-to-*E* isomerization rate constants (κ_{rev}) of BN-PVA/Azo-OC*n* (*n*=6, 8, 10, 12) under dark at LT, light at LT, and light at RT conditions, respectively. (d) The *E*-to-*Z* isomerization rate constants (κ_{rev}) of BN-PVA/Azo-OC*n* (*n*=6, 8, 10, 12) under UV light conditions.

Fig. S15 (a)-(c) Relationship between the *Z*-to-*E* isomerization rate constants (κ_{rev}), half-lives ($t_{1/2}$), and different Alkoxy chain length (*n*, *n*=6, 8, 10, 12) under dark at LT, light at LT, and light at RT conditions, respectively. (d) The *E*-to-*Z* isomerization under UV light conditions.

Fig. S16 (a) The bar chart of charging time of BN-PVA/Azo-OC*n* (*n*=6, 8, 10, 12) under UV light (365 nm). (b) The bar chart of reversion time of BN-PVA/Azo-OC*n* (*n*=6, 8, 10, 12) under dark and LT (-20 °C) conditions.

Fig. S17 DSC curves on T_g of (a) Z-BN-PVA/Azo-OC6, (c) Z-BN-PVA/Azo-OC8, (e) Z-BN-PVA/Azo-OC10, and (g) Z-BN-PVA/Azo-OC12 from -80 to -40 °C at a heating and cooling rate of 10 °C min⁻¹. DSC curves of (b) *E*-BN-PVA/Azo-OC6 (dotted blue line) and Z-BN-PVA/Azo-OC6 (straight yellow line), (d) *E*-BN-PVA/Azo-OC8 and Z-BN-PVA/Azo-OC8, (f) *E*-BN-PVA/Azo-OC10 and Z-BN-PVA/Azo-OC10 and (h) *E*-BN-PVA/Azo-OC12 and Z-BN-PVA/Azo-OC12 with the cooling and heating rate of 10 °C min⁻¹.

Fig. S18 Comparative compression curves of BN-PVA aerogels at different

temperatures (-20°C to 80°C). (a) -20 °C, and insert graph is the magnified view of deformation (ϵ) between 0.9-1.05 mm, (b) -10 °C, and insert graph is the magnified view of deformation (ϵ) between 0.9-1.05 mm, (c) 0 °C, and insert graph is the magnified view of deformation (ϵ) between 0.9-1.05 mm, (d) 20°C, and insert graph is the magnified view of deformation (ϵ) between 0.9-1.05 mm, (e) 50 °C, and insert graph is the magnified view of deformation (ϵ) between 0.9-1.05 mm, (e) 50 °C, and insert graph is the magnified view of deformation (ϵ) between 0.9-1.05 mm, (f) 80 °C, and insert graph is the magnified view of deformation (ϵ) between 0.9-1.05 mm, (f) 80 °C, and insert graph is the magnified view of deformation (ϵ) between 0.9-1.05 mm, (f) 80 °C, and insert graph is the magnified view of deformation (ϵ) between 0.9-1.05 mm, (f) 80 °C, and insert graph is the magnified view of deformation (ϵ) between 0.9-1.05 mm, (f) 80 °C, and insert graph is the magnified view of deformation (ϵ) between 0.9-1.05 mm, (f) 80 °C, and insert graph is the magnified view of deformation (ϵ) between 0.9-1.05 mm, (f) 80 °C, and insert graph is the magnified view of deformation (ϵ) between 0.9-1.05 mm.

Fig. S19 Comparative compression curves of BN-PVA/Azo-OC12 composite aerogel at different temperatures. (a) -20 °C, (b) the magnified view at -20°C, (c) 0 °C, (d) the magnified view at 0°C, (e) 30 °C, (f) the magnified view at 30°C, (g) 80 °C, (h) the magnified view at 80°C.

Fig. S20 Comparative curves of compressive stress and deformation (ϵ) of BN-PVA aerogel (a) and BN-PVA/Azo-OC12 composite aerogel (b) at different temperatures.

Fig. S21 (a) Statistical comparison plots of the maximum values of exothermic temperatures (T_{max}) of BN-PVA, *E*-BN-PVA/Azo-OC12, and *Z*-BN-PVA/Azo-OC12 at - 20°C, 0°C, and 80°C. (b) Statistical plots of the exothermic temperature difference between *E*-BN-PVA/Azo-OC12 and *Z*-BN-PVA/Azo-OC12 (ΔT_{Z-E}), BN-PVAand *Z*-BN-PVA/Azo-OC12 (ΔT_{Z-BN}) at the same temperature.

Fig. S22. The maximum exothermic temperature statistics graph of heat release after each cycle in 5 charge-discharge cycles. (a) *Z*-BN-PVA/Azo-OC12; (b) *E*-BN-PVA/Azo-OC12.

Fig. S23 Heat release at room temperature (25.7 °C). Time-evolved IR thermal imaging with BN-PVA, Z-BN-PVA/Azo-OC12 and *E*-BN-PVA/Azo-OC12 for one cycle, including Sunlight irradiation (yellow arrow) for 20 min and natural exotherm (gray arrow) for the succeeding 18 min. T_{max} is the maximum temperature displayed in the infrared thermal imager.

Fig. S24 Plot of exothermic temperature (*T*) versus time at high temperature (80 °C) for BN-PVA, *Z*-BN-PVA/Azo-OC12 and *E*-BN- PVA/Azo-OC12.

Fig. S25 Heat release at high temperature (80 °C). Time-evolved IR thermal imaging with BN-PVA, *Z*-BN-PVA/Azo-OC12 and *E*-BN-PVA/Azo-OC12 for one cycle, including Sunlight irradiation (yellow arrow) for 25 min and natural exotherm (gray arrow) for the succeeding 5 min. T_{max} is the maximum temperature displayed in the infrared thermal imager.

Supplementary Tables

Samples	P (%)	F (%)
BN-PVA/Azo-OC6	90.14	80.02
BN-PVA/Azo-OC8	91.24	81.21
BN-PVA/Azo-OC10	93.89	83.75
BN-PVA/Azo-OC12	91.10	81.77

Table S1 The porosity (*P*) and the filling ratio (*P*) of BN-PVA/Azo-OC*n* (*n* = 6, 8, 10, 12) aerogels.

Table S2 Element content of BN-PVA and BN-PVA/Azo-OCn (n = 6, 8, 10, 12) aerogels.

Comple		Element content (%)				
Sample	С	Ν	0	В		
BN-PVA	60.11	5.02	30.9	3.95		
BN-PVA/Azo-OC6	74.82	7.11	13.79	4.18		
BN-PVA/Azo-OC8	76.18	7.46	13.26	3.09		
BN-PVA/Azo-OC10	78.79	7.45	9.64	4.11		
BN-PVA/Azo-OC12	80.46	7.37	8.43	3.74		

Table S3 Total specific surface area, micropore specific surface area, pore volume, microporevolume percentage, and average pore diameter of BN-PVA aerogel.

	Surface Area	Micropore	Micropore	Microporous volume	Average pore
Sample	$(m^2 a^{-1})$	Area	volume $(cm^3 a^{-1})$	percentage	diameter
		(m ² g ⁻¹)	volume (cm g)	(cm ³ g ⁻¹)	(nm)
BN-PVA	70.61	9.89	0.094	15.96%	52.86

Table S4 The *Z*-to-*E* and *E*-to-*Z* isomerization rate constants (κ_{rev}) and half-lives ($t_{1/2}$) of BN-PVA/Azo-OC*n* (*n* = 6, 8, 10, 12) under dark at LT, light at LT, light at RT, and UV light conditions.

Sampler	Dark at	LT	Light a	t LT	Light at	RT	UV	
Samples	κ _{rev} (×10 ⁻⁶ s ⁻¹)	t _{1/2} (h)	κ _{rev} (×10 ⁻⁴ s ⁻¹)	t _{1/2} (min)	κ _{rev} (×10 ⁻⁴ s ⁻¹)	t _{1/2} (min)	κ _{rev} (×10 ⁻⁴ s ⁻¹)	t _{1/2} (min)
BN-PVA/Azo-OC6	24.33	79.17	9.41	12.27	16.80	6.88	22.12	5.22
BN-PVA/Azo-OC8	18.67	103.15	9.03	12.78	14.43	8.00	12.24	9.44
BN-PVA/Azo-OC10	14.25	135.12	5.90	19.60	11.09	10.42	10.70	10.80
BN-PVA/Azo-OC12	11.01	175.04	2.76	41.93	8.75	13.20	8.44	13.68

Table S5 The T_c (T_{c-E} and T_{c-Z}), ΔH_c (ΔH_{c-E} and ΔH_{c-Z}), T_{iso} , ΔH_{iso} , T_g , and ΔH_{total} of BN-PVA/Azo-OCn (n = 6, 8, 10, 12, respectively).

Sample	S	<i>Т</i> _с (°С)	<i>ΔH_c</i> (J g⁻¹)	<i>Т_{іso}</i> (°С)	<i>∆H_{iso}</i> (J g⁻¹)	<i>Т_g</i> (°С)	ΔH _{total} (J g ⁻¹)
	Z-Azo-OC6	-	-	95.16	144.5	-59.61	
BN-PVA/Azo-OC6	E-Azo-OC6	50.86	94.6	-	-	-	239.1
BN-PVA/Azo-OC8	Z-Azo-OC8	-	-	95.42	138.8	-63.43	240.3
	E-Azo-OC8	58.54	101.5	-	-	-	
	Z-Azo-OC10	-21.28	33.67	98.04	129.0	-64.27	
BN-PVA/Azo-OC10	E-Azo-OC10	60.73	119.8	-	-	-	282.5
BN-PVA/Azo-OC12	Z-Azo-OC12	-13.35	42.88	99.42	112.7	-44.88	204 7
	E-Azo-OC12	62.85	129.1	-	-	-	284.7

Table S6 The T_{Z-max} , T_{E-max} , T_{BN-max} , ΔT_{Z-E_r} and ΔT_{Z-BN} at -20 °C, 0 °C, and 80 °C measured by thermocouples for BN-PVA aerogel and BN-PVA/Azo-OC12 composite aerogel.

Temperature (°C)	T _{z-max} (°C)	Т _{Е-тах} (°С)	Т _{ВN-тах} (°С)	∆7 _{z-E} (°C)	ΔΤ _{Z-BN} (°C)
-20	12.55	3.16	-9.9	9.39	22.45
0	31.75	24.05	19	7.7	12.75
80	58.3	63.4	70.18	-5.1	-11.88

	т _{, max} (°С)	т (°С)	∆T _{total} (°C)
BN-PVA	70.4	-8.7	79.1
E-BN-PVA/Azo-OC12	63.84	4.43	68.27
Z-BN-PVA/Azo-OC12	58.4	7.1	65.5

Table S7 The T_{max} , T_{min} , and ΔT_{total} of BN-PVA, *E*-BN-PVA/Azo-OC12, and *Z*-BN-PVA/Azo-OC12 measured by thermocouples during the warming process from -20 °C to 80 °C.

Table S8 The surface temperatures of BN-PVA, E-BN-PVA/Azo-OC12, and Z-BN-PVA/Azo-OC12 at -20 °C as a function of time.

Time (min)	Τ _{BN-PVA} (°C)	<i>Т_{Е-ВN-PVA/Azo-OC12}</i> (°С)	𝕇 _{Z-BN-PVA/Azo-OC12} (°C)
0 min	-5	-5	-5.1
10 min	-4.8	10.4	13.7
35 min	7.3	21.3	29.2
60 min	5.8	15.1	18.8
80 min	3.6	4.3	4.6

Table S9 The surface temperatures of BN-PVA, E-BN-PVA/Azo-OC12, and Z-BN-PVA/Azo-OC12 at -25.7 °C as a function of time.

Time (min)	BN/PVA	E-BN-PVA/Azo-OC12	Z-BN-PVA/Azo-OC12
0min	38.1	43.9	57.5
5 min	39.9	50.5	60.1
20 min	38.5	47.5	59.2
30 min	37.6	43.2	57
50 min	31.7	38.5	41.9

Table S10 The surface temperatures	of BN-PVA,	E-BN-PVA/Azo-OC12,	and Z-BN-PVA/Azo-OC12
at 80 °C as a function of time.			

BN/PVA	E-BN-PVA/Azo-OC12	Z-BN-PVA/Azo-OC12
42.9	45.9	46.8
47.9	53.6	56.8
48.2	55.2	57.1
50.2	55.8	57.9
46.9	52.9	55.7
	BN/PVA 42.9 47.9 48.2 50.2 46.9	BN/PVA E-BN-PVA/Azo-OC12 42.9 45.9 47.9 53.6 48.2 55.2 50.2 55.8 46.9 52.9

Supplementary Equations

Equation S1

$$V_1 = r^2 \times h$$
$$V_2 = \frac{m}{\rho}$$
$$P = \frac{V_1 - V_2}{V_1}$$

where *P* is the porosity, V_1 is the total volume of the BN-PVA aerogel, *r* is the diameter of the aerogel, and *h* is the thickness of the aerogel; V_2 is the volume of BN-PVA, *m* is the mass of the aerogel, and ρ is the density of BN-PVA.

Equation S2

$$V_3 = \frac{m_{total}}{\rho_1}$$
$$F = \frac{V_3}{V_1 - V_2}$$

where *F* represents the filling ratio, V_3 is the volume of filled BN-PVA composite aerogel, *m* is the mass of the filled composite aerogel, and ρ is the density of the filled photo-controlled PCMs.

Equation S3^[1]

$$\ln\left(\frac{A_{\infty}-A_{t}}{A_{\infty}-A_{0}}\right) = -\kappa_{rev}t$$

Where A_0 is the absorption intensity of π - π^* transition peak in the Z-Azo-OCn irradiated by UV light, A_t is the absorption intensity of π - π^* transition peak reversing for "t" time, A_{∞} is the absorption intensity of π - π^* transition peak after complete Z-reversion and κ_{rev} is Z-to-E isomerization rate constants under blue light or in darkness.

Equation S4^[2]

$$t_{1/2} = \frac{\ln 2}{\kappa_{rev}}$$

Where $t_{1/2}$ is the dark half-lives and κ_{rev} is Z-to-E isomerization rate constants under blue light or in darkness.

Equation S5^[3]

$$\Delta H_{total-1} = \Delta H_{iso} + \Delta H_{c-E}$$

Where $\Delta H_{total-1}$ is the total energy density, ΔH_{c-E} is the crystallization enthalpies of the *E*isomer, and the ΔH_{iso} is the isomerization enthalpies. This formula is applied to two heat release processes of BN-PVA/Azo-OC6 and BN-PVA/Azo-OC8.

Equation S6^[3]

$$\Delta H_{total-2} = \Delta H_{c-E} + \Delta H_{c-Z} + \Delta H_{iso}$$

Where $\Delta H_{total-2}$ is the total energy density, ΔH_{c-E} is the crystallization enthalpies of the *E*isomer, ΔH_{c-Z} is the crystallization enthalpies of the *Z*-isomer, and the ΔH_{iso} is the isomerization enthalpies. This formula is applied to three heat release processes of BN-PVA/Azo-OC10 and BN-PVA/Azo-OC12.

Notes and references

[1] Q. Yan, Y. Zhang, Y. Dang, Y. Feng, W. Feng. Solid-state high-power photo heat output of 4-((3,5-dimethoxyaniline)-diazenyl)-2-imidazole/graphene film for thermally controllable dual data encoding/reading. *Energy Stor. Mater.* 2020; 24: 662-669.

[2] H. Wang, Y. Feng, J. Gao, W. Fang, J. Ge, X. Yang, F. Zhai, Y. Yu, W. Feng. Metallic-ion controlled dynamic bonds to co-harvest isomerization energy and bond enthalpy for high-energy output of flexible self-heated textile. *Adv. Sci.* 2022; 9: 2201657.

[3] H. Liu, J. Tang, L. Dong, H. Wang, T. Xu, W. Gao, F. Zhai, Y. Feng, W. Feng. Optically triggered synchronous heat release of phase-change enthalpy and photo-thermal energy in phase-change materials at low temperatures. *Adv. Funct. Mater.* 2020; 31: 2008496.