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Chemicals 

All chemicals were of analytical grade and were used as received. Sodium tungstate dihydrate 

(H4Na2O6W, 98‒100%), thiourea (CH4N2S, 96%), oxalic acid (C2H2O4, 98.5%), cobalt(II) nitrate 

hexahydrate (Co(NO3)2, ~97%), 2-methylimidazole (C4H6N2, ~98%), methanol (CH3OH, 

~99.99%), and ethanol (C2H5OH, 94%) were purchased from Daejung Chemicals. Carbon cloth 

(CC) was commercially obtained from NARA Cell-Tech Corporation and employed as the 

substrate for the working electrode. 

Electrochemical measurements 

All electrochemical experiments were conducted using a Corrtest workstation (CS350 in COM3) 

with a three-electrode setup. The tests were performed using 1 M KOH and (1 M KOH + 1 M 

Na2S) as electrolyte solutions for the water and sulfur oxidation reactions (OER, HER, and SOR). 

The catalyst ink for the working electrode was prepared by grinding the catalyst material, 

acetylene black, and polyvinylidene fluoride (PVDF) in a ratio of 80:10:10 using N-methyl-2-

pyrrolidone (NMP) as the solvent. The as-prepared catalyst ink coated on CC (1 cm2), a platinum 

plate, and Hg/HgO were used as the working, counter, and reference electrodes, respectively. 

The linear sweep voltammetry (LSV) curves were obtained within different voltage windows for 

the HER, OER, and SOR at a scan rate of 5 mV s-1 with 85 % iR-compensation. The 

overpotential (η) and Tafel slope were calculated using the equations: η = ERHE – 1.23 (OER) 

and η = b log(j) + a (where j is the current density and b is the Tafel slope). Electrochemical 

impedance spectroscopy (EIS) data were acquired in the frequency range of 100 kHz to 0.1 Hz 

with an amplitude of 10 mV. The double-layer capacitance (Cdl) and electrochemical surface area 

(ECSA) were calculated from the CV curves acquired in the non-Faradaic region at different 
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scan rates from 20 to 100 mV s-1. The corresponding ECSA was calculated using the following 

equation: ECSA = Cdl/Cs, where Cs is the specific capacitance of the sample (Cs = 0.040 mF cm-

2) in 1 M KOH electrolyte [1]. The catalyst stability was evaluated via chronopotentiometry 

measurement at a current density of 10 mA cm-2. The overall water-splitting performance was 

evaluated in a two-electrode cell using the CW-2 electrocatalyst as both the anode and cathode. 

Moreover, the stability during the operation of a full cell was explored by chronopotentiometry 

measurement at 10 mA cm-2. All the potentials were calibrated relative to the reversible 

hydrogen electrode (RHE) according to the Nernst equation: ERHE = EHg/HgO + 0.059 × pH + 

0.098. Furthermore, a two-cell configuration for the SOR was achieved by assembling the CW-2 

catalysts as the anode and cathode in an H-type electrolyzer.

Turnover frequency 

Turnover frequency (TOF) values can be calculated from the formula; TOF 

(s−1) = j×NA/(n×SA×F), where, j is the current density, NA is the Avogadro’s number, n is the 

number of electrons involved to produce one molecule of the product (in case of UOR; 6 

electrons are involved to produce O2 molecule), F is the Faraday constant, and SA is the amount 

of accessible active sites. The SA is calculated from the formula; SA = (Integrated area of 

reduction part of CV curve/scan rate)/charge of an electron. 

Faradic efficiency measurement and calculation:

Faradaic measurements of the catalysts were conducted using the chronopotentiometry technique, 

maintaining a constant current density of 10 mA cm−2. The generated O2 gas from the working 

electrode was monitored at 10-minute intervals. Subsequently, the following calculations were 

employed:[61]
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Faradaic efficiency  × 100
=  

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 µ𝑚𝑜𝑙 𝑜𝑓 𝑂2 𝑔𝑎𝑠

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 µ𝑚𝑜𝑙 𝑜𝑓 𝑂2 𝑔𝑎𝑠

The theoretical μmol of O2 gas was calculated from Faraday’s law;

𝑛 =  
𝐼 × 𝑡
𝑧 × 𝐹

, where n is the number of mol, I is current (A), t is time (s), z is the transfer of electrons (z = 4), 

and F is the Faraday constant (96,485 C mol-1).

The experimental μmol of O2 gas was measured from the water displacement method and then 

the pressure is converted into units of an atmosphere by Dalton’s law of partial pressure

𝑃𝑡𝑜𝑡𝑎𝑙 =  𝑃𝑜𝑥𝑦𝑔𝑒𝑛 +  𝑃𝑤𝑎𝑡𝑒𝑟

The number of μmol of O2 gas produced in water displacement is calculated by,

PV = nRT

Where, V is the volume of produced gas (liters), T is the temperature (kelvin), and R is the ideal 

gas constant (0.0821 L atm/mol K).

Calculation of SOR Faradic efficiency:

The mass of sulfur powder ( ) was obtained from the acidification process after the 𝑚𝑠

chronopotentiometric test. The Faradic efficiency of sulfur is calculated using ;

𝐹𝑎𝑟𝑎𝑑𝑖𝑐 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑚𝑠 × 𝑍 × 𝐹

𝑀𝑠 × 𝑄
 × 100% 
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Where  denotes the weight of sulfur,  denotes the relative molecular weight of sulfur, Z 𝑚𝑠 𝑀𝑠

denotes the number of electrons producing a sulfur molecule, F is the Faraday constant (96,45 C 

mol−1), and Q is the recorded charge during the electrolysis. 

Characterization 

The X-ray diffraction (XRD, Xpert Pro equipped with Cu Kα radiation) was used to study the 

crystal structures of the samples. Field emission scanning microscopy (FE-SEM, HITACHI S-

4800 and high-resolution transmission electron microscopy (HRTEM, Titan G2 ChemiSTEM Cs 

Probe) was used to analyze the morphological nature of the obtained materials. The electronic 

properties and chemical surface analysis were studied by X-ray photoelectron spectroscopy (XPS, 

Thermoscientific K-α surface analysis). The electron spin resonance spectra were measured 

using an electron spin resonance spectrometer (Brucker (EMXplus-9.5/2.7)). 

X-Ray Absorption Spectroscopy Characterization 

The synchrotron X-ray absorption spectroscopy (XAS) analysis were conducted at the Taiwan 

Light Source (TLS), a part of the National Synchrotron Radiation Research Center (NSRRC), 

Taiwan, on beamline BL17C, which was fitted with a Si (111) double-crystal monochromator. 

The TLS storage ring ran at 1.5 GeV and a current of 360 mA. There were two distinct zones of 

XAS, and the X-ray absorption near-edge structures (XANES) were at the absorption edge of the 

XAS spectrum between −30 and 100 eV. The oxidation state and band occupancy were 

determined based on the binding energy of a core electron. The extended X-ray absorption fine 

structures (EXAFS), which were oscillations within the region beyond the absorption edge of 50 

eV to 1000 eV, were linked to the local electronic structure such as coordination numbers, bond 
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distances, as well as Debye-Waller factors. These could be produced by electron backscatter by 

atoms in the surrounding coordination environment. Both the W and Co K-energy edges 

resolutions were adjusted to 0.35 eV. Transmission mode was used to record the XAS spectra. 

Standard techniques were used to examine the raw data, including data prior to and after edge 

background subtractions, edge jump normalization, and Fourier processing.

In Situ X-Ray Absorption Spectroscopy Characterization

X-ray absorption spectroscopy (XAS) studies were carried out at beamline BL17C (at the 

Taiwan Light Source (TLS), National Synchrotron Radiation Research Center (NSRRC), 

Taiwan). The XAS spectra were collected in transmission mode. In-situ XAS was carried out at 

BLO1C (NSRRC) by fluorescence mode. Raw data were analyzed following standard 

procedures, including pre-edge and post-edge background subtractions, normalization for the 

edge jump, and Fourier transformation.

Fig. S1. (a,b) FESEM images of MOF-derived Co3O4 catalyst. 
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Fig S2. FESEM images of (a,b) CW-1 and (c,d) CW-3 heterostructure samples. 
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Fig S3. Enlarged XRD pattern of different electrocatalysts. 
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Fig S4. XPS survey spectrum of WS2, Co3O4, and CW-2 catalysts. 
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Fig S5. Fourier-transformed k3χ data of EXAFS oscillations for W k-space of different catalysts.
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Fig S6. Fourier-transformed k3χ data of EXAFS oscillations for Co k-space of different catalysts.
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Fig. S7. EXAFS spectra of prepared heterostructure catalysts and the corresponding fitting 

results for CW-1 (a), CW-2 (b), and CW-3 (c). Experimental data and fitted profiles are 

highlighted as black and red lines, respectively.
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Fig S8. OER polarization curve of Co3O4 NPs@WS2.



S14

Fig S9. HER polarization curve of Co3O4 NPs@WS2.
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Fig S10. (a-e) CV spectra of different catalysts and (f) Cdl plots of different electrocatalysts. 



S16

Fig. S11. ECSA of different catalysts.
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Fig S12. Equivalent circuit for fitting EIS data obtained for OER, HER, and SOR.
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Fig. S13. Chronopotentiometric curve of CW-2 at -10 and -50 mA cm-2 (inset shows LSV curve 

of CW-2: initial and after 48 h).
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Fig. S14. (a-f) The fitting results of W L3-edge EXAFS spectra at OCP to 1.55 V applied 

potential.
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Fig. S15. Photographic image of colorimetric changes of SOR.
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Fig. S16. Theoretical and experimental yield of sulfur powder at the anode during the 

electrolysis.
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Fig. S17. XRD pattern of CW-2 and CW-2 (after SOR stability).
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Fig. S18. HRTEM image of CW-2 (after SOR stability).
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Fig. S19. XPS survey spectra of CW-2 (after SOR stability).
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Fig. S20. High-resolution XPS spectra (a) W 4f, (b) S 2p, (c) Co 2p, and (d) O 1s spectra of CW-

2 (after SOR stability).
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Table S1. Summary of FT-EXAFS fitting data for CW at critical potential. 

Samples Path CN= N × S0
2 σ2 (Å-2) ∆E0 (eV) R-factor R(Å)

Co-O/S 5.61 0.0086 -12.92 2.19CW-1

Co-Co 4.95 0.0107 -74.32

0.0014

2.53

Co-O/S 5.43 0.0001 -19.25 1.99CW-2

Co-Co 4.21 0.0001 -99.03

0.0007

2.48

Co-O/S 5.22 0.0132 -10.104 2.00CW-3

Co-Co 4.55 0.0043 -94.78

0.0023

2.47
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Table S2. Summary of previously reported TMDs-based heterostructure HER electrocatalysts 

towards the three-cell electrode.

Catalyst Electrolyte HER

Overpotential (mV) @ 10 mA cm-2

Ref

ZnS-ZnO-

MoS2/Ti3C2Tx 

0.5 M H2SO4 327 [2]

1T/2H 

MoS2/Ti3C2Tx

1 M KOH 300 [3]

MoS2/Graphene 1 M KOH 183 [4]

NiCo-WSe2 0.5 M H2SO4 205 [5]

MoS2/Black 

Phosphorus

1 M KOH 237 [6]

Ag/MCNT/WS2 1 M KOH 218 [7]

S doped-WTe2 1 M KOH 195 [8]

CoSe2@N-doped 

rGO

0.5 M H2SO4 172 [9]

P-doped@1T- WS2 1 M KOH 190 [10]
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Ni@N-Gr/MoS2 0.5 M H2SO4 270 [11]

MoSe2-Mo2C/NC 1 M KOH 214 [12]

MOF-derived 

Co3O4@WS2

1 M KOH 153 This work
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Table S3. Summary of previously reported TMDs-based heterostructure OER electrocatalysts 

towards the three-cell electrode.

Catalyst Electrolyte OER

Overpotential (mV) @ 10 mA cm-2

Reference

MoSe2@CoAl-LDH 1 M KOH 360 [13]

NiMoSe@Ti3C2Tx 1 M KOH 320 [14]

FeNi@N-doped Mo2C 1 M KOH 304 [15]

MoSe2@Co/Ni NPs 1 M KOH 378 [16]

Ni(OH)2/MoS2 1 M KOH 360 [17]

N-doped MoS2@CoFe 

NPs

1 M KOH 337 [18]

CoTe2/NiTe2@ N-

doped NCBs

1 M KOH 320 [19]

MoS2/NiS2 1 M KOH 303 [20]

Fe2O3-MnO 1 M KOH 370 [21]

MOF-derived 

WS2@Co3O4

1 M KOH 270 This work
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Table S4. Summary of FT-EXAFS fitting data for CW-2 at critical potential.

Samples Path CN= N × S0
2 σ2 (Å-2) ∆E0 (eV) R-factor R(Å)

W-S 5.41

 

0.00573

 

-6.734

 

2.37CW-2 

Air

W-W 3.13

 

0.03889 -5.836

 

0.0040

2.98

W-S 5.57 0.01116 -4.123 2.39CW-2

OCP

W-W 3.22 0.01480 -5.146

0.0041

3.03

W-S 5.71 0.01828 -6.016 1.963CW-2

0.25 V

W-W 3.35 0.00231 -5.457

0.0022

2.952

W-S 5.82 0.02032 -6.201 1.964CW-2

0.35 V

W-W 3.49 0.00845 -5.707

0.0119

2.957

W-S 5.86 0.01163 -6.331 1.965CW-2

0.45 V

W-W 3.56 0.01657 -5.311

0.0701

2.953

W-S 5.75 0.01445 -6.247 1.963CW-2

0.55 V

W-W 3.68 0.02385 -5.258

0.0045

2.953
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N is the coordination number; S2
0 is amplitude reduction factor, R is the interatomic distance (the 

bond length between X-ray absorbing atoms and surrounding coordination atoms); σ2 is Debye-
Waller factor (a measure of thermal and static disorder in absorber-scattered distances); E0, inner 
potential correction; R-factor, indicating the goodness of the fit.

Table S5. Comparision of previously stated SOR electrocatalysts towards three and two -cell 

electrode.

Catalyst Electrolyte SOR

Potential (V) 

HER//SOR

Potential (V) 

Referen

ce

Fe, F co-doped NiO 1 M KOH +

1  M Na2S

0.63 @ 100 mA cm-

2

0.83 @ 100 mA cm-2 [22]

FeMo-S@Ru 1 M NaOH + 

2.4 M Na2S

0.31 @ 100 mA cm-

2

0.57 @ 100 mA cm-2 [23]

Cu@NiFe-LDH 1 M KOH +

1  M Na2S

0.31 @ 100 mA cm-

2

0.61 @ 50 mA cm-2 [24]

a-RhS2–x metallene 1 M KOH +

4  M Na2S

0.48 @ 100 mA cm-

2

0.44 @ 10 mA cm-2 [25]

CoS@MoS2 1 M KOH +

1  M Na2S

0.31 @ 10 mA cm-2 0.52 @ 10 mA cm-2 [26]

TPA@Ni3S2 1 M KOH +

1  M Na2S

0.48 @ 100 mA cm-

2

- [27]

VPd@Pd4S 1 M KOH +

4  M Na2S

0.77 @ 100 mA cm-

2

0.59 @ 100 mA cm-2 [28]
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NiS@CoS 1 M NaOH + 

1 M Na2S

0.34 @ 100 mA cm-

2

0.54 @ 100 mA cm-2 [29]

Nano Ni

functionalized@MoS2

1 M NaOH + 

1 M Na2S

0.35 @ 10 mA cm-2 0.49 @ 10 mA cm-2 [30]

MOF-derived 

WS2@Co3O4

1 M KOH +

4  M Na2S

0.31 @ 10 mA cm-2 0.41 @ 10 mA cm-2 This 

work
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