Supporting Information

An ultrathin support layer based on carbon nanotubes/polyvinyl alcohol for forward osmosis membranes with outstanding water flux

Hsi-Yuan Juan^a, Shivam Gupta^a, Chi-Young Lee^a, Yi-Ting Lai^{*b,c,d}, and Nyan-Hwa Tai^{*a,e}

^aDepartment of Materials Science and Engineering,

National Tsing Hua University Hsinchu, 300, Taiwan, ROC.

^bDepartment of Materials Engineering, ^cCenter for Plasma and Thin Film Technologies,

^dBiochemical Technology R&D Center, Ming Chi University of Technology,

New Taipei City, 24301, Taiwan, ROC.

^eInstitute of Analytical and Environmental Science,

National Tsing Hua University Hsinchu, 300, Taiwan, ROC.

Corresponding author E-mail:

laieating@mail.mcut.edu.tw (Prof. Yi-Ting Lai)

nhtai@mx.nthu.edu.tw (Prof. Nyan-Hwa Tai)

Fig. S 1 (a) The schematic diagram and (b) photo of proposed lab-scale cross flow setup for the FO testing system.

	Young's modulus (MPa)	Tensile strength (MPa)	Elongation (%)
V ₀ (CNTs)	1076	13.69	1.57
V _{0.25}	1032	25.58	4.38
V _{0.5}	735	11.91	3.39
V _{0.75}	805	9.14	1.3
V _{0.25} -D70	1514	31.52	4.67

Table S 1 The calculated mechanical properties of the TCF membranes.

* V_x : x represents the PVA concentration in CNTs/PVA dispersion (wt%). Dy: y presents the addition of PDA dispersion (mL).

Fig. S 2 FESEM images of the CNTs/PVA support layers containing PVA with concentrations of (a) 0.25 wt%, (b) 0.5 wt5, and (c) 0.75 wt%. The yellow arrows point out the formation of nanopores.

Fig. S 3 XPS survey spectra of the V_0 and $V_{0.25}$ support layer. The presence of the small nitrogen peak is caused by the residual surfactant in CNTs dispersion.

Fig. S 4 The polymerization of PDA and the uniformly distributed PDA nanoparticles on $V_{0.25}$ -D70

surface.

Fig. S 5 The FTIR spectra of the $V_{0.25}\mbox{-}Dy\mbox{-}PA$ TFC membranes.

Fig. S 6 The XPS spectra of $V_{0.25}$ -Dy-PA TFC membranes.

Samples	Jw (LMH)	Js/Jw (g/L)	
V _{0.25} -(D0)-PA	18.77 ± 0.82	2.77 ± 0.22	
V _{0.25} -D10-PA	24.30 ± 3.17	1.29 ± 0.07	
V _{0.25} -D30-PA	35.31 ± 3.54	1.13 ± 0.12	
V _{0.25} -D50-PA	53.56 ± 5.17	0.40 ± 0.05	
V _{0.25} -D70-PA	90.86 ± 8.01	0.22 ± 0.02	
V _{0.25} -D100-PA	33.74 ± 3.68	0.56 ± 0.04	

Table S 2 The FO performance of the proposed $V_{0.25}\mbox{-}Dy\mbox{-}PA$ TFC membranes.

Manaharana	A	В	S	Deferre	
Membrane	(L m ⁻² h ⁻¹ bar ⁻¹)	(L m ⁻² h ⁻¹)	(µm)	Keierence	
V _{0.25} -D70-PA	4.93	1.07	58.7	This work	
eTFC-NC2	5.44	0.52	192	[2]	
PAN1500	1.56	0.35	163	[3]	
AQP-TFC-HF-	2.66	0.21	172	[4]	
PEI	5.00	0.31	172		
HTI CA	0.67	0.40	678	[5]	

Table S 3 Comparison of the A, B, and S values of the composite membrane in this study with those from other studies [1].

Reference

- 1. Tiraferri, A., et al., *A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes.* Journal of Membrane Science, 2013. **444**: p. 523-538.
- 2. Li, B., et al., *High performance electrospun thin-film composite forward osmosis membrane by tailoring polyamide active layer with polydopamine interlayer for desulfulrization wastewater desalination*. Desalination, 2022. **534**: p. 115781.
- 3. Han, C., et al., *Improved performance of thin-film composite membrane supported by aligned nanofibers substrate with slit-shape pores for forward osmosis*. Journal of Membrane Science, 2020. **612**: p. 118447.
- 4. Li, X., et al., *Fabrication of a robust high-performance FO membrane by optimizing substrate structure and incorporating aquaporin into selective layer*. Journal of Membrane Science, 2017. **525**: p. 257-268.
- 5. Ren, J. and J.R. McCutcheon, *A new commercial thin film composite membrane for forward osmosis*. Desalination, 2014. **343**: p. 187-193.