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Experimental Details 

Pretreatment of graphene oxide nanoribbons (GONRs): 

Upon receiving the purchased GONRs, begin by dispersing the GONRs in a mixture of 

20 mL DIW and 20 mL ethanol, to form a homogeneous suspension. This can be achieved by 

ultrasonication, where the mixture is subjected to ultrasonic waves for a 2 h to ensure thorough 

dispersion. After ultrasonication, centrifuge the suspension at a high speed, for about 30 min. 

This step helps to separate the unexfoliated particles and any aggregates from the exfoliated 

nanoribbons. Carefully decant the supernatant containing the dispersed GONRs and transfer it to 

a new container. The next step involves the washing process, which is critical for removing any 

residual solvents, contaminants, or by-products from the synthesis process. Add a fresh portion 

of the solvent to the GONRs, followed by repeated ultrasonication and centrifugation, as 

described previously. This washing step should be repeated at least three times to ensure 

thorough cleaning. Finally, the purified GONRs can be collected by air-drying the suspension, 

yielding a powder form of graphene oxide nanoribbons ready for further characterization.

Calculation Method:

Mass activity: The values of mass activity (A/g) are calculated from the catalyst loading density 

m and the measured current density j(mA/cm2) at ɳ=0.35V. The mass activity can be calculated 

as follows:

 Mass activity=j/m.

Specific activity: The values of Specific Activity (mA/cm2) are calculated from the BET surface 

area, SBET (m2/g) and mass activity. 

The mass activity can be calculated as follows: 

Specific activity=j/(10mSBET).
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Fig. S1: Element mapping (a) O, (b) Ni, (c) Mn, and corresponding (d) EDS spectra NiMnO3
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Fig. S2: Comparative CV plot of f NMO based electrodes in 2 M KOH electrolyte 

(inset actual images of all the electrodes after electrochemical test).

Fig. S3: Capacitive and diffusion-current contributions of CT@NMO-rGO in 2 M 

KOH electrolyte different scan rates.
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Fig. S4: Plot of specific capacitance/capacity vs scan rate of NMO based electrodes in 2 

M KOH electrolyte.

Fig. S5: ComparativeN2 adsorption-deadsorption plot of NMO based electrodes.
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Fig. S6: Plot of specific capacitance/capacity vs current density of NMO based 

electrodes.

Fig. S7: GCD curves of the CT@Zn/NMO-rGO//AC ASSCS recorded at different 

potential windows at current density of 0.1 A/g in 2 M KOH electrolyte.
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Fig. S8: Radar plot comparison of the performance of the pristine NMO, CT@NMO, 

CT@NMO-rGO and CT@Zn/NMO-rGO electrodes realized.
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Fig. S9: Plot of specific capacitance/capacity verses current density of CT@Zn/NMO-

rGO//AC ASSCS.

Fig. S10: FE-SEM micrograph of graphene oxide nanoribbon
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Table S1: Comparison of OER activity data for NMO-based Catalysts. 

Sr. 

No.

Catalyst Loading 

density 

(mg/cm2)

Overpotential 

(η) (mV)

@10 mA/cm2

Tafel slope

(mV/dec)

Mass activity

@η = 0.35 V (A/g)

SBET (m2/g) Specific activity 

@η =0.35 V 

(mA/cm2)

1. NMO 6.1 465.2 327.3 0.4 68.2 0.005

2. CT@NMO 6.3 407.1 324.7 0.8 76.4 0.008

3. CT@NMO-rGO 6.4 352 303.1 1.7 89.5 0.011

4. RuO2 8.1 348.4 268.8 1.72 - -

5. CT@Zn/NMO-rGO 9.8 296 144.4 2.54 98.4 0.016

6. NF - 549.3 544.5 - - -
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Table S2: Capacitive performance comparison of some nickel, cobalt, manganese based metal oxides and NF based electrodes.

Sr.
No. Material Synthesis Method Morphology Current 

collector Electrolyte
Specific

capacitance
Cs (F/g)

Retention 
% After 
Cycles

Ref.

1. Ni1-xMgxMnO3
Chemical co-precipitation 

route. Micro-clusters NF 6 M KOH 527 89.3/1000 [1]

2. NiMnO3-
rGO-Co3O4/NF Hydrothermal Nanoflakes  NF 2 M KOH 3.9 F/cm2 95.5/5000        [2]

3. NiMnO3 Hydrothermal Nano-clusters NF 1 M KOH 435 98.1/2000 [3]
4. NiMnO3 Hydrothermal Nanocube NF 6 M KOH 99.03 77/7000 [4]

5. Fe-doped-NiMnO3
Microwave-assisted 

hydrothermal Nanoflower NF 6 mol/L KOH 732.7 78.3/10000 [5]

6. NiMnO3 Hydrothermal Polycrystalline Carbon cloth 1 M KOH 230 67/2000 [6]

7. NiMnO3
Microwave-assisted 

hydrothermal flower-like nanoballs NF 6 mol/L KOH 345.8 92/10000 [7]

8. NiMnO3 Electrospinning Nanosheets NF 1 M KOH 290 88.6/1000 [8]
9. NG-NiMnO3 Hydrothermal Rhombohedral NF 1 M Na2SO4 875 88.5/5000 [9]
10. NiMnO3-rGO Hydrothermal Nano-fiber Cotton-Cu 1 M KOH 404.4  mF/cm2 [10]
11. Ni6MnO8/ NiMnO3 Solvothermal spheres NF 6 mol/L KOH 291.9 83.4/5000 [11]
12. NiMnO3/Ni6MnO8 Solvothermal-hydrothermal nanoblocks@nanoballs NF 6 M KOH 494.4 88/5000 [12]

13. Ni/NiMnO3/MnO2@
NiMn

Green synthesis Nanoflakes NiMn 
substrate 1 M KOH 2700 F/cm3 [13]

14. NiMnO3@NiO Electrodeposition@ 
Hydrothermal

Nanospheres@ 
nanospheres carbon fiber 4 M KOH 1090 89.6/5000 [14]

15. NiMnO3 Electrodeposition Nanospheres carbon fiber 4 M KOH 752 84.2/5000 [14]
16. NiMnO3/NiMn2O4 sol-gel Nano-cotton NF 3 M KOH 869 [15]

17. NiMnO3/ 
NiMn2O4/CNT Sol-gel auto combustion Agglomeration-

nanoparticled  NF 3 M KOH 1347 67/1000 [15]

18. NiMnO3-rGO Hydrothermal Nanosheets NF 3 M KOH 91 mA h/g [16]
19. NiMnO3 Hydrothermal Nanospheres NF 3 M KOH 62  mA h/g [16]
20. NiMnO3 Hydrothermal Nanosheets Carbon cloth 6 M KOH 2330 67.8/1000 [17]

21.
NiMnO3

NiMnO3/GO
NiMnO3/rGO

Co-precipitation Microspheres NF 0.01 M KOH
70
170
285

87/1000 [18]

22. CT@zn/NMO-rGO Chemical reduction method Nanoplates  NF 1 M KOH 1404 89.2/30000 This Work
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