Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting information

High-Entropy Oxides derived Cu catalyst for enhanced dehydrogenation of

cyclohexanol coupling with hydrogenation of acetone

Authors:

Rui Li,^a Yingdan Ye,^a Yibin Zhang,^a Huaiyuan Zhao,^{ab} Weichen Du,^b Zhaoyin Hou^{*ab}

^{*a*} Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China.

^b Zhejiang Hengyi Petrochemical Research Institute Co., Ltd., Hangzhou 311200, China.

* Corresponding author

Zhaoyin Hou

Tel/Fax: 86-571-88273283

Email: zyhou@zju.edu.cn

Preparation of Cu/MgO, Cu/Al₂O₃, Cu/ZnO: 1.902 g Cu(NO₃)₂·3H₂O (0.5 g Cu) was dissolved in the corresponding amount of deionized water, and 4.5 g pretreated MgO (Al₂O₃, ZnO) was added to the solution under stirring. After that, the mixture was pretreated in an ultrasonic bath for 30 min and left to stand for 24 h. Then it was dried in an oven at 120 °C for 12 h and calcinated in a muffle furnace at 400 °C for 4 h. The CuO/MgO (Al₂O₃, ZnO) precursor was pressed, crushed, and sieved to obtain 40~60 mesh particles. Before the catalytic reaction, CuO/MgO (Al₂O₃, ZnO) was reduced at 300 °C for 1 h in 10% H₂/N₂ and the final 10 wt% Cu/MgO (Al₂O₃, ZnO) catalyst was obtained.

Preparation of Cu_{0.7}/Mg_{7.3}Al₂O_{10.3}: 1.721 g Cu(NO₃)₂·3H₂O, 18.686 g

 $Mg(NO_3)_2 \cdot 6H_2O$ and 7.503 g Al(NO₃)₃·9H₂O were mixed and dissolved in 200 mL deionized water, which was labeled as solution A. 16 g NaOH and 13.25 g Na₂CO₃ were dissolved in 400 mL deionized water and recorded as solution B. Solution A and solution B were mixed by peristaltic pump and added dropwise with a controlled pH of 9.5. After that, the suspension was transferred into a 500 mL Teflon-lined stainless-steel autoclave and kept at 100 °C for 14 h. The formed solid was filtered and washed with deionized water until the pH of the filtrate was close to 7, and then it was dried in an oven at 80 °C overnight and denoted as $Cu_{0.7}Mg_{7.3}Al_2(OH)_{20}CO_3$. The above precursor was calcinated in a muffle furnace at 400 °C for 4 h with a heating rate of 5 °C/min. The obtained solid was pressed into 40~60 mesh particles and designated as

 $Cu_{0.7}Mg_{7.3}Al_2O_{11}$. Before the catalytic reaction, the above $Cu_{0.7}Mg_{7.3}Al_2O_{11}$ was reduced at 300 °C for 1 h in 5% H₂/N₂ and the final $Cu_{0.7}/Mg_{7.3}Al_2O_{10.3}$ catalyst was obtained.

Preparation of Cu_{0.8}/Mg_{7.2}Sc₂O_{10.2}: 1.867 g Cu(NO₃)₂·3H₂O, 18.531 g

Mg(NO₃)₂·6H₂O and 5.188 g ScCl₃·6H₂O were mixed and dissolved in 200 mL deionized water, which was labeled as solution A. 16 g NaOH and 13.25 g Na₂CO₃ were dissolved in 400 mL deionized water and recorded as solution B. Solution A and solution B were mixed using peristaltic pump and added dropwise with a controlled pH of 9.5. Subsequently, the above mixture was transferred into a 500 mL Teflon-lined stainless steel autoclave and kept at 100 °C for 14 hours. The formed solid was filtered and washed with distilled water until the pH of the filtrate was close to 7, and then it was dried in an oven at 80 °C overnight and denoted as $Cu_{0.8}Mg_{7.2}Sc_2(OH)_{20}CO_3$. The above precursor was calcinated in a muffle furnace at 400 °C for 4 h with a heating rate of 5 °C/min. The obtained solid was pressed into 40~60 mesh particles and designated as $Cu_{0.8}Mg_{7.2}Sc_2O_{11}$. Before the catalytic

reaction, the above $Cu_{0.8}Mg_{7.2}Sc_2O_{11}$ was reduced at 300 °C for 1 h in 5% H₂/N₂ and the final $Cu_{0.8}/Mg_{7.2}Sc_2O_{10.2}$ catalyst was obtained.

Table S1.

Catalaat	Temp	Pressure	N_2	Velocity	Conv	Sel.	Def	
. (°C)		(atm)	$(cm^3 \cdot min^{-1})$	$(mL \cdot h^{-1})$. (%)	(%)	Kel.	
Cu/Al ₂ O ₃	250	1	50	5 ^b	81	79	[1]	
CuO-ZnO-Cr ₂ O ₃	240	1	10	1	80	60	[2]	
Cu-ZnO/SiO ₂	300	1	-	3000 ^c	91	85	[3]	
Cu/N-rGO	250	1	N_2	57 ^b	85.8	86.3	[4]	
Cu/ZrO ₂	250	-	20	1	62	93	[5]	
Cu/SiO ₂	250	-	-	1.5	60	90	[6]	
Cu/SBA-15	250	-	-	7.7 ^b	55	95	[7]	
Cu-SBA-15	250	-	20	1	70	99	[8]	
CuO-ZnO-MgO	260	-	-	2.34 ^b	55	99.2	[9]	
Cu/MgO-SBA15	250	1	10 <i>a</i>	1860 ^c	78	96	[10]	
Cu–MgO	250	-	-	1.2	64.3	100	[11]	
WS_{90}^{300}	250	1	-	1	56.5	99.8	[12]	

Performance of reported Cu-based catalysts for cyclohexanol dehydrogenation.

 a N₂/CHOL = 10.

^b WHSV, weight hourly space velocity.

^c GHSV, gaseous hourly space velocity.

Table S2.

Catalyst composition and raw material feeding.

Catalyst	Cu ^a (g)	$Zn \ ^{b}(g)$	$Mg^{c}(g)$	Al $d(g)$	Sc ^e (g)
Redeucd Cu _{0.72} Zn _{0.14} Mg _{7.14} Al ₂ O ₁₁ -HEO	1.745	0.430	18.290	7.503	/
Redeucd Cu _{0.78} Zn _{0.16} Mg _{7.06} Sc ₂ O ₁₁ -HEO	1.893	0.466	18.102	/	5.188

^{*a*} Cu: Cu(NO₃)₂·3H₂O.

^{*b*} Zn: Zn(NO₃)₂·6H₂O.

^{*c*} Mg: Mg(NO₃)₂·6H₂O.

^{*d*} Al: Al(NO₃)₃·9H₂O.

^{*e*} Sc: ScCl₃·6H₂O.

Table S3.

LDH precursor	$d_{003}({ m \AA})$	$d_{110}(\text{\AA})$	a (Å) a	c (Å) b
Cu _{0.72} Zn _{0.14} Mg _{7.14} Al ₂ (OH) ₂₀ CO ₃	7.809	1.535	3.07	23.43
$Cu_{0.75}Zn_{0.15}Mg_{7.1}Al_1Sc_1(OH)_{20}CO_3$	7.908	1.558	3.12	23.72
$Cu_{0.78}Zn_{0.16}Mg_{7.06}Sc_2(OH)_{20}CO_3$	7.841	1.578	3.16	23.52

^{*a*} parameter $a = 2d_{110.}$

^b parameter $c = 3d_{003.}$

Figure S1. TG-DSC curves of Cu_{0.75}Zn_{0.15}Mg_{7.1}Al₁Sc₁(OH)₂₀CO₃.

Figure S2. XRD patterns of $Cu_x Zn_{0.2x}Mg_{8-1.2x}Al_ySc_{2-y}O_{11}$ -HEOs. (1) $Cu_{0.72}Zn_{0.14}Mg_{7.14}Al_2O_{11}$ -HEO; (2) $Cu_{0.75}Zn_{0.15}Mg_{7.1}Al_1Sc_1O_{11}$ -HEO; (3) $Cu_{0.78}Zn_{0.16}Mg_{7.06}Sc_2O_{11}$ -HEO.

Figure S3. SEM (a) and HRTEM images (b) of $Cu_{0.75}Zn_{0.15}Mg_{7.1}Al_1Sc_1O_{11}$ -HEO.

Table S4.

Textural	propertie	s of other	Cu-based	catalysts.
	1 1			1

Catalvat	$\mathbf{S}_{\mathrm{BET}}$	Pore diameter	Pore volume	Cu dispersion
Catalyst	(m^{2}/g)	(nm)	(cm^{3}/g)	(%) ^a
Cu _{0.7} /Mg _{7.3} Al ₂ O _{10.3}	106	3.9	0.65	58.9
$Cu_{0.8}/Mg_{7.2}Sc_2O_{10.2}$	129	6.5	0.70	50.5
Cu/Al ₂ O ₃	123	5.6	0.54	38.8
Cu/MgO	21	3.2	0.26	24.5
Cu/ZnO	2	3.5	0.02	3.2

 $^{\it a}$ Calculated from N2O titration after the catalysts were reduced in H2 at 300 °C.

Figure S4. H₂-TPR profiles of $Cu_xZn_{0.2x}Mg_{8-1.2x}Al_ySc_{2-y}O_{11}$ -HEOs.

 $\begin{array}{l} (1) \ Cu_{0.72}Zn_{0.14}Mg_{7.14}Al_2O_{11}\text{-}HEO; \ (2) \ Cu_{0.75}Zn_{0.15}Mg_{7.1}Al_1Sc_1O_{11}\text{-}HEO; \\ (3) \ Cu_{0.78}Zn_{0.16}Mg_{7.06}Sc_2O_{11}\text{-}HEO. \end{array}$

Table S5.

	-	л 0.	$2\pi 0^{-1}$. <u>2</u> . y	2 y 1.	1		
Catalvet	Acidity (µmol/m ²) ^a		Tota	Basicity (µmol/m ²) ^b			Tota	
Catalyst	Weak	Medium	Strong	1	Weak	Medium	Strong	1
Cu _{0.72} Zn _{0.14} Mg _{7.14} Al ₂ O ₁₁ -HEO	0.25	0.45	0.30	1.0	0.87	0.99	0.62	2.5
$Cu_{0.75}Zn_{0.15}Mg_{7.1}Al_1Sc_1O_{11}$ -	0.27	0.32	0.19	0.8	1.19	1.34	0.75	3.3
HEO								
$Cu_{0.78}Zn_{0.16}Mg_{7.06}Sc_{2}O_{11}\text{-}HEO$	0.24	0.26	0.13	0.6	1.96	1.73	1.06	4.7
~	4 ~							

Density of desorbed NH₃ and CO₂ in $Cu_xZn_{0.2x}Mg_{8-1.2x}Al_ySc_{2-y}O_{11}$ -HEOs.

^a Calculated from NH₃-TPD and S_{BET};

^b Calculated from CO₂-TPD and S_{BET}.

Figure S5. *In-situ* XPS survey of Cu_{0.75}Zn_{0.15}Mg_{7.1}Al₁Sc₁O₁₁-HEO before and after reduction.

Table S6.

Catalyst	Surface content (Atomic%)					
Catalyst	Cu	Zn	Mg	Al	Sc	
Cu _{0.75} Zn _{0.15} Mg _{7.1} Al ₁ Sc ₁ O ₁₁ -HEO ^{<i>a</i>}	7.3	1.6	70.2	10.5	10.4	
After reduction ^{<i>a</i>}	7.4	1.6	70.1	10.6	10.3	
Theoretical ^b	7.5	1.5	71.0	10.0	10.0	

Composition of $Cu_{0.75}Zn_{0.15}Mg_{7.1}Al_1Sc_1O_{11}$ -HEO before and after reduction.

^a Surface content calculated from XPS analysis.

^b Theoretical content calculated from the actual amount of feed.

Conversion of ACE and lectivity of iPrOH in ACE:H₂=6:1.
 Conversion of ACE and lectivity of iPrOH in ACE:CHOL=1:1.
 Conversion of ACE and lectivity of iPrOH in ACE:H₂=1:3.

Reaction conditions: $Cu_{0.75}Zn_{0.15}Mg_{7.1}Al_1Sc_1O_{11}$ -HEO 0.3 g, WHSV of acetone 11.3 h⁻¹.

At the same time, hydrogenation of acetone with molecular H_2 and cyclohexanol (as the H donator) at different temperatures were performed and compared in Figure S6. It was found that the conversion of acetone increased with the increasing ratio of H_2 /acetone in feed, indicating that $Cu_{0.75}Zn_{0.15}Mg_{7.1}Al_1Sc_1O_{11}$ -HEO was also active for the separated hydrogenation of acetone. And the detected conversion of acetone in molecular H_2 was similar or even higher than that in cyclohexanol (as the H donator). More interestingly, the selectivity of isopropanol in cyclohexanol was higher than that in molecular H_2 .

Figure S7. TG-DSC curves of reduced Cu_{0.75}Zn_{0.15}Mg_{7.1}Al₁Sc₁O₁₁-HEO in spent.

Figure S8. XRD patterns of reduced Cu_{0.75}Zn_{0.15}Mg_{7.1}Al₁Sc₁O₁₁-HEO in fresh and spent.

References

- 1 N. P. Tangale, P. S. Niphadkar, S. S. Deshpande and P. N. Joshi, *Appl. Catal.*, *A*, 2013, **467**, 421–429.
- 2 V. Siva Kumar, S. Sreevardhan Reddy, A. H. Padmasri, B. David Raju, I. Ajitkumar Reddy and K. S. Rama Rao, *Catal. Commun.*, 2007, **8**, 899–905.
- 3 D. Ji, W. Zhu, Z. Wang and G. Wang, Catal. Commun., 2007, 8, 1891–1895.
- 4 A. Mageed, D. Radiah, S. Ali, S. Izhar, M. Abdul Razak and B. Ayodele, *Bull. Chem. React. Eng. Catal.*, 2020, **15**, 568–578.
- 5 P. Nagaiah, C. V. Pramod, M. Venkata Rao, B. David Raju and K. S. Rama Rao, *Catal. Lett.*, 2018, **148**, 3042–3050.
- 6 M. Gliński, U. Ulkowska and E. Iwanek, J. Chem. Educ., 2016, 93, 1623–1625.
- 7 C. Soumini, S. Sugunan and S. Haridas, J. Porous Mat., 2019, 26, 631–640.
- 8 B. Sridevi, P. Nagaiah, A. H. Padmasri, B. David Raju and K. S. Rama Rao, *J. Chem. Sci.*, 2017, **129**, 601–608.
- 9 S. V. Sancheti and G. D. Yadav, Mol. Catal., 2021, 506, 111534.
- 10 R. K. Marella, V. R. Madduluri, S. K. Lakkaboyana, M. M. Hanafiah and S. Yaaratha, *RSC Adv.*, 2020, **10**, 38755–38766.
- 11 K. N. Patil, P. Manikanta, R. R. Nikam, P. M. Srinivasappa, A. H. Jadhav, H. P. Aytam, K. S. Rama Rao and B. M. Nagaraja, *Results Eng.*, 2023, **17**, 100851.
- 12 I. Ali, T. Kon'kova, V. Vanchurin, D. Solntseva, T. A. Kurniawan, A. A. Alothman, M. S. S. Mushab and G. Imanova, *Catal Lett*, 2024, 1–11.