Reducing the hydrogen transfer barrier by introduction of Ru *via* constructed Ir-Ru-WO_{2.72} bridge for highly CO-tolerant hydrogen oxidation

Xu Yu^{1,2,#}, Han Tian^{1,#}, Ziyi Yu¹, Fantao Kong¹, Chang Chen^{1,2}, Ziwei Chang⁴, Jian Huang¹, Xiangzhi Cui^{1,2,3} *, Jianlin Shi^{1,2}

¹ Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China

² Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China

³ School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study,

University of Chinese Academy of Sciences, Hangzhou 310024, PR China

⁴ School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, PR China

*Email: cuixz@mail.sic.ac.cn

Figure S1. (a-b) SEM images of PS template.

Figure S2. (a-b) SEM images of WO_{2.72}-C at different magnifications.

Figure S3. N₂ adsorption-desorption isotherms of WO_{2.72}-C and IrRu-WO_{2.72}-C.

Figure S4. (a-b) TEM images of $WO_{2.72}$ -C at different magnifications and the corresponding (c) HRTEM images. The d \approx 0.38 nm is assigned to the (010) plane of monoclinic $WO_{2.72}$.

Figure S5. (a-d) Bright field (BF) STEM images of WO_{2.72}-C at different angles,

Figure S6. (a-d) SEM images of IrRu-WO_{2.72}-C at different magnifications.

Figure S7. (a-c) TEM images of IrRu-WO_{2.72}-C at different magnifications. (d) The size distribution histograms of IrRu alloy clusters for IrRu-WO_{2.72}-C.

Figure S8. AC HAADF-STEM images (a, b) and liner elemental scanning profiles of

IrRu clusters (c).

Figure S9. Digital photos of (a) WO₃, (b)WO_{2.72}, (c) WO_{2.72}-C and (d) IrRu-WO_{2.72}-C.

Figure S10. The Tauc plots of UV–vis spectra for (a) IrRu-WO_{2.72}-C, (b) WO_{2.72}-C, (c) WO_{2.72} and (d) WO₃.

Figure S11. High-resolution XPS spectra of W 4f for IrRu-WO_{2.72}-C, Ru-WO_{2.72}-C and

WO_{2.72}-C.

Figure S12. High-resolution XPS spectra of Ru 3p for IrRu-WO_{2.72}-C and Ru-WO_{2.72}-C

C.

Figure S13. High-resolution XPS spectra of Ir 4d for IrRu-WO_{2.72}-C and Ir-WO_{2.72}-C.

Figure S14. High-resolution XPS spectra of O 1s for IrRu-WO_{2.72}-C, Ru-WO_{2.72}-C and

WO_{2.72}-C.

Figure S15. ESR spectra of IrRu-WO_{2.72}-C, Ir-WO_{2.72}-C, Ru-WO_{2.72}-C and WO_{2.72}-C.

Figure S16. High-resolution XPS spectra of C 1s and Ru 3d for IrRu-WO_{2.72}-C, Ir-WO_{2.72}-C, Ru-WO_{2.72}-C and WO_{2.72}-C.

Figure S17. HOR polarization curves of IrRu-WO_{2.72}-C in N₂ or H₂ saturated 0.5 M H_2SO_4 .

Figure S18. HOR polarization curves of (a) 20 wt.% Pt/C, (b) Ru-WO_{2.72}-C, (c) Ir-WO_{2.72}-C and (d) WO_{2.72}-C at different rotating speeds.

Figure S19. HOR polarization curves (a) and Tafel plots of kinetic current densities (b) for IrRu-WO_{2.72}-C, 0.5 IrRu-WO_{2.72}-C and 1.5 IrRu-WO_{2.72}-C.

Figure S20. HOR polarization curves of (a) 0.5 IrRu-WO_{2.72}-C and (b) 1.5 IrRu-WO_{2.72}-C at different rotating speeds. (c) Koutecky–Levich plots of the catalysts at 0.15 V vs RHE.

Figure S21. HOR polarization curves (a) and Tafel plots of kinetic current densities (b)

for IrRu-WO_{2.72}-C, IrRu(2:1)-WO_{2.72}-C and IrRu(1:2)-WO_{2.72}-C.

Figure S22. HOR polarization curves of (a) IrRu(2:1)-WO_{2.72}-C and (b) IrRu(1:2)-WO_{2.72}-C at different rotating speeds. (c) Koutecky-Levich plots of the catalysts at 0.15 V *vs.* RHE.

Figure S23. High-resolution XPS spectra of W 4f (a), Ir 4f (b), Ru 3p (c) and O1s (d)

for IrRu-WO_{2.72}-C and after stability test named as IrRu-WO_{2.72}-C-after.

Figure S24. SEM image of IrRu-WO_{2.72}-C after stability test.

Figure S25. HOR polarization curves in H_2 and 1,000 ppm CO/ H_2 saturated electrolytes for (a) 20 wt.% Pt/C, IrRu-WO_{2.72}-C and (b) Ir-WO_{2.72}-C.

Figure S26. Side view of model structure for WO_{2.72}-C.

Figure S27. Side view of different H adsorption model structure on IrRu-WO_{2.72}-C.

Figure S28. Side view of different H adsorption model structure on Ir-WO_{2.72}-C.

Figure S29.Schematic representation of the HOR mechanism and active hydrogen

transfer	pathway	on	the	Ir-WO _{2.72} -C	surface.
----------	---------	----	-----	--------------------------	----------

Figure S30. Power density curves of IrRu-WO_{2.72}-C, Ir-WO_{2.72}-C, Ru-WO_{2.72}-C and WO_{2.72}-C.

Table	S1 .	The	Ir and	Ru	loading	gs of	samp	les	tested	by	ICP-	OES.
						_				~		

Samples	Percentage of Ir (wt.%)	Percentage of Ru (wt.%)
IrRu-WO _{2.72} -C	1.19	1.65
Ir-WO _{2.72} -C	1.65	/
Ru-WO _{2.72} -C	/	2.43

Samples	The electrical conductivity values (S cm ⁻¹)			
WO ₃	1.30×10 ⁻⁵			
IrRu-WO _{2.72} -C	9.29×10 ⁻⁵			
WO _{2.72} -C	0.22			
IrRu-WO _{2.72} -C	2.41			

 Table S2. The electrical conductivity values of as-prepared catalysts.

Catalyst	HOR current density (mA/cm ²)	The mass loading	Papers
Ru@TiO ₂	~ 2.9	$25.07 \mu g_{Ru} \text{ cm}^{-2}$	Nat. Catal. ¹
IrP ₂ -rGO	~ 2.5	$8.84 \ \mu g_{Ir} \ cm^{-2}$	ACS Appl. Mater. Interfaces ²
PdRu-WO _x /C	~ 3.1	49.44 $\mu g_{Pd} cm^{-2}$	Catal. Today ³
Ni _x Mo _{1-x} O ₂	~ 0.95	/	ACS Energy Lett. ⁴
Rh-Rh ₂ O ₃ NPs/C	~3.3	$10.20 \ \mu g_{Rh} \ cm^{-2}$	J. Mater. Chem. A ⁵
Ir _{NP} @Ir _{SA} -N-C	~2.7	$5.61 \mu g_{Ir} \text{ cm}^{-2}$	Angew. Chem., Int. Ed.
IrRu-N-C	~3.2	3.06 µg _{Ir} cm ⁻²	Proc. Natl. Acad. Sci. U.S.A ⁷
IrRu-WO _{2.72} -C	~3.35	$5.41 \mu g_{Ir} \text{ cm}^{-2}$	This work

 Table S3. HOR performances in acidic media in the latest reported literature.

Catalyst	HOR current density (mA cm ⁻²)	mass loading of catalyst (mg cm ⁻²)	mass loading of precious metal (μg _{Ir/Pt} cm ⁻²)
IrRu-WO _{2.72} -C	~3.35	0.51	5.41
Ir-WO _{2.72} -C	~3.12	0.51	8.62
20 wt.% Pt-C	~2.68	0.51	102.04

 Table S4. The performance comparison and corresponding catalyst loading.

References:

- [1] Y.Y. Zhou, Z.Y. Xie, J.X. Jiang, J. Wang, X.Y. Song, Q. He, W. Ding, Z.D. Wei,Nat. Catal., 2020, 3, 454-462.
- [2] Z. Pu, T. Liu, W. Zhao, X. Shi, Y. Liu, G. Zhang, W. Hu, S. Sun, S. Liao, ACS Appl. Mater. Interfaces, 2020, 12, 11737-11744.
- [3] K. Kwon, S.A. Jin, K.H. Lee, D.J. You, C. Pak, Catal. Today, 2014, 232, 175-178.
- [4] H. Zeng, S. Chen, Y.Q. Jin, J. Li, J. Song, Z. Le, G. Liang, H. Zhang, F. Xie, J.
- Chen, Y. Jin, X. Chen, H. Meng, ACS Energy Lett., 2020, 5, 1908-1915.
- [5] M.K. Kundu, R. Mishra, T. Bhowmik, S. Barman, J. Mater. Chem. A, 2018, 6, 23531-23541.
- [6] X. Yang, Y. Wang, X. Wang, B. Mei, E. Luo, Y. Li, Q. Meng, Z. Jin, Z. Jiang, C.
- Liu, J. Ge, W. Xing, Angew. Chem. Int. Edit., 2021, 60, 26177-26183.
- [7] X. Wang, Y. Li, Y. Wang, H. Zhang, Z. Jin, X. Yang, Z. Shi, L. Liang, Z. Wu, Z. Jiang, W. Zhang, C. Liu, W. Xing, J. Ge, Proc Natl Acad Sci U S A, 2021, 118, e2107332118.