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Figure S1. (a-b) SEM images of PS template. 
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Figure S2. (a-b) SEM images of WO2.72-C at different magnifications.
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Figure S3. N2 adsorption-desorption isotherms of WO2.72-C and IrRu-WO2.72-C. 
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Figure S4. (a-b) TEM images of WO2.72-C at different magnifications and the 

corresponding (c) HRTEM images. The d≈0.38 nm is assigned to the (010) plane of 

monoclinic WO2.72.
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Figure S5. (a-d) Bright field (BF) STEM images of WO2.72-C at different angles,
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Figure S6. (a-d) SEM images of IrRu-WO2.72-C at different magnifications. 
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Figure S7. (a-c) TEM images of IrRu-WO2.72-C at different magnifications. (d) The 

size distribution histograms of IrRu alloy clusters for IrRu-WO2.72-C.
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Figure S8. AC HAADF-STEM images (a, b) and liner elemental scanning profiles of 

IrRu clusters (c).
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Figure S9. Digital photos of (a) WO3, (b)WO2.72, (c) WO2.72-C and (d) IrRu-WO2.72-C.
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Figure S10. The Tauc plots of UV–vis spectra for (a) IrRu-WO2.72-C, (b) WO2.72-C, (c) 

WO2.72 and (d) WO3.
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Figure S11. High-resolution XPS spectra of W 4f for IrRu-WO2.72-C, Ru-WO2.72-C and 

WO2.72-C.
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Figure S12. High-resolution XPS spectra of Ru 3p for IrRu-WO2.72-C and Ru-WO2.72-

C.
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Figure S13. High-resolution XPS spectra of Ir 4d for IrRu-WO2.72-C and Ir-WO2.72-C.
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Figure S14. High-resolution XPS spectra of O 1s for IrRu-WO2.72-C, Ru-WO2.72-C and 

WO2.72-C.
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Figure S15. ESR spectra of IrRu-WO2.72-C, Ir-WO2.72-C, Ru-WO2.72-C and WO2.72-C.
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Figure S16. High-resolution XPS spectra of C 1s and Ru 3d for IrRu-WO2.72-C, Ir-

WO2.72-C, Ru-WO2.72-C and WO2.72-C. 
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Figure S17. HOR polarization curves of IrRu-WO2.72-C in N2 or H2 saturated 0.5 M 

H2SO4.  
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Figure S18. HOR polarization curves of (a) 20 wt.% Pt/C, (b) Ru-WO2.72-C, (c) Ir-

WO2.72-C and (d) WO2.72-C at different rotating speeds.
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Figure S19. HOR polarization curves (a) and Tafel plots of kinetic current densities (b) 

for IrRu-WO2.72-C, 0.5 IrRu-WO2.72-C and 1.5 IrRu-WO2.72-C.
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Figure S20. HOR polarization curves of (a) 0.5 IrRu-WO2.72-C and (b) 1.5 IrRu-

WO2.72-C at different rotating speeds. (c) Koutecky−Levich plots of the catalysts at 0.15 

V vs RHE.
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Figure S21. HOR polarization curves (a) and Tafel plots of kinetic current densities (b) 

for IrRu-WO2.72-C, IrRu(2:1)-WO2.72-C and IrRu(1:2)-WO2.72-C.
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Figure S22. HOR polarization curves of (a) IrRu(2:1)-WO2.72-C and (b) IrRu(1:2)-

WO2.72-C at different rotating speeds. (c) Koutecky-Levich plots of the catalysts at 0.15 

V vs. RHE.
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Figure S23. High-resolution XPS spectra of W 4f (a), Ir 4f (b), Ru 3p (c) and O1s (d) 

for IrRu-WO2.72-C and after stability test named as IrRu-WO2.72-C-after.
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Figure S24. SEM image of IrRu-WO2.72-C after stability test.
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Figure S25. HOR polarization curves in H2 and 1,000 ppm CO/H2 saturated 

electrolytes for (a) 20 wt.% Pt/C, IrRu-WO2.72-C and (b) Ir-WO2.72-C.
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Figure S26. Side view of model structure for WO2.72-C.
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Figure S27. Side view of different H adsorption model structure on IrRu-WO2.72-C.
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Figure S28. Side view of different H adsorption model structure on Ir-WO2.72-C.
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Figure S29.Schematic representation of the HOR mechanism and active hydrogen 

transfer pathway on the Ir-WO2.72-C surface.
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Figure S30. Power density curves of IrRu-WO2.72-C, Ir-WO2.72-C, Ru-WO2.72-C and 

WO2.72-C.
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Table S1. The Ir and Ru loadings of samples tested by ICP-OES.

Samples Percentage of Ir (wt.%) Percentage of Ru (wt.%)

IrRu-WO2.72-C 1.19 1.65

Ir-WO2.72-C 1.65 /

Ru-WO2.72-C / 2.43
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Table S2. The electrical conductivity values of as-prepared catalysts.

Samples The electrical conductivity values (S cm-1)

WO3 1.30×10-5

IrRu-WO2.72-C 9.29×10-5

WO2.72-C 0.22

IrRu-WO2.72-C 2.41
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Table S3. HOR performances in acidic media in the latest reported literature.

Catalyst
HOR current 

density（mA/cm2

）

The mass loading Papers

Ru@TiO2 ~ 2.9 25.07μgRu cm-2 Nat. Catal. 1

IrP2-rGO ~ 2.5 8.84 μgIr cm-2 ACS Appl. Mater. 
Interfaces 2

PdRu-WOx/C ~ 3.1 49.44 μgPd cm-2 Catal. Today 3

NixMo1-xO2 ~ 0.95 / ACS Energy Lett. 4

Rh-Rh2O3 
NPs/C ~3.3 10.20 μgRh cm-2 J. Mater. Chem. A 5

IrNP@IrSA-N-C ~2.7 5.61μgIr cm-2 Angew. Chem., Int. Ed. 
6

IrRu-N-C ~3.2 3.06 μgIr cm-2 Proc. Natl. Acad. Sci. 
U.S.A 7

IrRu-WO2.72-C ~3.35 5.41μgIr cm-2 This work
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Table S4. The performance comparison and corresponding catalyst loading.

Catalyst
HOR current density 

(mA cm-2)
mass loading of 

catalyst (mg cm-2)

mass loading of precious 
metal

(μgIr/Pt cm-2)

IrRu-WO2.72-C ~3.35 0.51 5.41

Ir-WO2.72-C ~3.12 0.51 8.62

20 wt.% Pt-C ~2.68 0.51 102.04
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