Supporting information

Achieving Dynamic Stability of Single-Crystal Low-Co Ni-Rich Cathode Material for High performance Lithium Batteries

Adil Saleem,^a Leon L. Shaw,^{a*} Mehwish Khalid Butt,^b Javed Rehman,^b Arshad Hussain,^c Zawar Hussain,^d Rashid Iqbal,^{e*} Muhammad Kashif Majeed,^{f*}

^aDepartment of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL, United States.

^bState Key Laboratory of Metastable Materials Science and Technology, and School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China. ^cInterdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudia Arabia.

^dInstitute for Advanced Study, Shenzhen University, Shenzhen 518060, China.

^eKey Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China.

^fDepartment of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, United States.

*Corresponding author:

- *Leon L. Shaw (Email: <u>lshaw2@iit.edu</u>)
- *Rashid Iqbal (Email: rashid@szu.com)
- *Muhammad Kashif Majeed (Email: drmkm@utdallas.edu)

Electrode	a	С	Rp	Rwp	Rexp	Li/Ni cation
material	(Å)	(Å)	(%)	(%)	(%)	mixing (%)
Fresh-	2.878	14.241	5.03	8.56	3.08	3.28
NMC						
Fresh-	2.865	14.289	4.99	7.89	3.36	2.96
NMFAC						

Table S1: Rietveld XRD refinement results of the pristine cathode materials.

Table S2: Metal-oxygen bond lengths for NMC and NMFAC obtained from the DFT calculation of this study.

	NMC	NMFAC		
Bonds	а	b	с	
	(Å)	(Å)	(Å)	
Ni-O	-	Ni-O	1.980	
Li-O	-	Li-O	2.016	
Mn-O	1.986	Fe-O	2.012	
Co-O	1.967	Al-O	1.95	

Table S3. Chemical compositions of Ni, Mn, Fe, Al, and Co for NMC and NMFAC measured via the ICP-AES test.

Sample	Chemical composition (at. %)					
NMC	Ni	Mn	Со	-	-	
	90.02	4.97	5.01	-	-	
NMFAC	Ni	Mn	Fe	Al	Со	
	90.01	5.02	2.04	1.95	0.98	

Figure S1: (**a**, **b**) Rietveld refinement results of the XRD patterns, and (**c**, **d**) XPS survey spectrum for NMC and NMFAC, respectively.

Figure S2: SEM images of (a) $Ni_{0.90}Mn_{0.05}Co_{0.05}(OH)_2$ and (b) $Ni_{0.90}Mn_{0.05}Fe_{0.02}Al_{0.02}Co_{0.01}(OH)_2$ precursors.

Figure S3: Discharge voltage profiles of (**a**) NMC and (**b**) NMFAC full cells with a graphite anode at 2.8 - 4.3 V.

Figure S4: Nyquist plots of (a) before and (b) after 100 cycles for NMC and NMFAC cathode materials.

Cathode		$R_s(\Omega)$	$R_{SEI}(\Omega)$	$R_{int}(\Omega)$	$R_{ct}(\Omega)$
NMC	Before cycle	1.69	-	-	109
	After 100 cycles	2.15	5.05	129	495
NMFAC	Before cycle	1.75	-	-	42
	After 100 cycles	1.93	4.80	126	431

Figure S5: SEM and TEM images of (a-c) NMC and (d-f) NMFAC after 600 cycles.

	Cycling Stability						
Cathode	Initial Discharge	Voltage	No. of	Loading	Rate	Retention	
	capacity [mAh g ⁻¹]		Cycles	(mg/cm ²)	(C)	(%)	
NMC	196	4.3 V vs. Li	100	~2.25	1C	90	
NMFAC	198	4.3 V vs. Li	100	~2.25	1C	93	
NMC	186	4.3 V vs. Gr	600	~2.22	1C	70	
NMFAC	189	13V vs. Gr	600	~2 22	1 C	81	

Table S5: Electrochemical performance comparison of NMC and NMFAC with half-cell and full cell (our work).

		Cycling Sta	bility				
Cathode	Initial Discharge	Voltage	No. of	Loading	Rate	Retention	Ref.
	capacity [mAh g ⁻¹]		Cycles	(mg/cm ²)	(C)	(%)	
SCNMC811	185	4.3 V vs. Li	25	3	0.1C	~50%	[1]
SCNMC83	184	4.2 V vs.	600	47	1C	84%	[2]
		Gr/SiO					
LiNi _{0.89} Mn _{0.055} -	226	4.4 V vs. Li	100	-	0.1C	91%	[3]
C00.055O2							
LiNi0.883Mn0.056-	216	4.4 V vs. Li	100	2.5	1/3C	90%	[3]
Al0.061O2							
LiNi0.89Mn0.044C00.042-	213	4.4 V vs. Li	100	2.5	1/3C	93%	[3]
Al0.013Mg0.011O2							
LiNi0.883C00.053-	220	4.4 V vs. Li	100	2.5	1/3C	88%	[3]
Al _{0.064} O ₂							
LiNi _x Fe _y Al _z O ₂	180	4.5 V vs. Li	100	5	0.3C	~70%	[4]
LiNi0.95Mg0.05O2	200	4.3 V vs. Li	100	10-12	0.05/	~90%	[5]
					0.2C		
LiNi0.95Al0.05O2	220	4.3 V vs. Li	100	10-12	0.05/	~86%	[5]
					0.2C		
LiNi0.93Al0.05Ti0.01-	221	4.25 V vs.	800	2.0	0.5C	52%	[6]
Mg0.01O2		Gr					
LiNi _{0.96} Mg _{0.02} Ti _{0.02} O ₂	180	4.4 V vs. Gr	300	1.4	1C	85%	[7]
LiNi0.8C00.1Mn0.09-	175	4.3 V vs. Li	100	-	0.5C	94%	[8]
Cu0.01O2							
NMC	196	4.3 V vs. Li	100	~2.25	1C	90	Our
NMFAC	198	4.3 V vs. Li	100	~2.25	1C	93	Work

Table S6: Comparison of the specific capacity and cycling performance of SC NMCand NMFAC cathodes with the previously reported Ni-rich cathodes.

Cathode	Doping elements	Synthesis technique	Initial charge capacity [mAh g ⁻¹]	Rate (C)	Ref.
LiNi0.905C00.04Mn0.04-	Al/Nb	Co-	230	0.1	[9]
Al0.005Nb0.01O2		precipitation			
LiNi _{0.890} Mn _{0.044} Co _{0.042} Al _{0.013}	Al/Mg	Со-	213	0.1	[3]
Mg0.011O2		precipitation			
LiNi0.598C00.08Mn0.3Zr0.002-	Zr/Ti	Co- ~180		0.3	[10]
Ti0.002O2		precipitation			
SC-NMC	Ce/Gd	Solid State	211	0.1	[11]
LiNiO ₂	Mg/Al	Interdiffusion 252		0.1	[12]
		strategy			
NMFAC	Fe/Al	Co-	248	0.2	Our Work
		precipitation			

Table S7: Comparison of the previously reported co-dopped Ni-rich cathodes with our work.

References

- [1] J. Zhu, G. Chen, Single-crystal based studies for correlating the properties and high-voltage performance of Li[NixMnyCo1-x-y]O2 cathodes, Journal of Materials Chemistry A 7(10) (2019) 5463-5474.
- [2] X. Fan, G. Hu, B. Zhang, X. Ou, J. Zhang, W. Zhao, H. Jia, L. Zou, P. Li, Y. Yang, Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries, Nano Energy 70 (2020) 104450.
- [3] W. Li, S. Lee, A. Manthiram, High-Nickel NMA: A Cobalt-Free Alternative to NMC and NCA Cathodes for Lithium-Ion Batteries, Advanced Materials 32(33) (2020) 2002718.

- [4] N. Muralidharan, R. Essehli, R.P. Hermann, A. Parejiya, R. Amin, Y. Bai, Z. Du, I. Belharouak, LiNixFeyAlzO2, a new cobalt-free layered cathode material for advanced Li-ion batteries, Journal of Power Sources 471 (2020) 228389.
- [5] H. Li, M. Cormier, N. Zhang, J. Inglis, J. Li, J.R. Dahn, Is Cobalt Needed in Ni-Rich Positive Electrode Materials for Lithium Ion Batteries?, Journal of The Electrochemical Society 166(4) (2019) A429-A439.
- [6] Z. Cui, Q. Xie, A. Manthiram, A Cobalt- and Manganese-Free High-Nickel Layered Oxide Cathode for Long-Life, Safer Lithium-Ion Batteries, Advanced Energy Materials 11(41) (2021) 2102421.
- [7] L. Mu, R. Zhang, W.H. Kan, Y. Zhang, L. Li, C. Kuai, B. Zydlewski, M.M. Rahman, C.-J. Sun, S. Sainio, M. Avdeev, D. Nordlund, H.L. Xin, F. Lin, Dopant Distribution in Co-Free High-Energy Layered Cathode Materials, Chemistry of Materials 31(23) (2019) 9769-9776.
- [8] T. Wu, G. Wang, B. Liu, Q. Huang, Y. Su, F. Wu, R.M. Kelly, The role of Cu impurity on the structure and electrochemical performance of Ni-rich cathode material for lithium-ion batteries, Journal of Power Sources 494 (2021) 229774.
- [9] S.-B. Lee, N.-Y. Park, G.-T. Park, U.-H. Kim, S.-J. Sohn, M.-S. Kang, R.M. Ribas, R.S. Monteiro, Y.-K. Sun, Doping Strategy in Developing Ni-Rich Cathodes for High-Performance Lithium-Ion Batteries, ACS Energy Letters 9(2) (2024) 740-747.
- [10] Z. Zhang, B. Hong, M. Yi, X. Fan, Z. Zhang, X. Huang, Y. Lai, In situ co-doping strategy for achieving long-term cycle stability of single-crystal Ni-rich cathodes at high voltage, Chemical Engineering Journal 445 (2022) 136825.
- [11] J. Li, H. Yang, Q. Deng, W. Li, Q. Zhang, Z. Zhang, Y. Chu, C. Yang, Stabilizing Ni-rich Single-crystalline LiNi0.83Co0.07Mn0.10O2 Cathodes using Ce/Gd Codoped High-entropy Composite Surfaces, Angewandte Chemie International Edition 63(10) (2024) e202318042.
- [12] L. Shen, F. Du, Q. Zhou, T. Xu, Z. Fan, Y. Wen, J. Wang, J. Wu, J. Zheng, Cobaltfree nickel-rich cathode materials based on Al/Mg co-doping of LiNiO2 for lithium ion battery, Journal of Colloid and Interface Science 638 (2023) 281-290.