Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Ultra-Low Ice Adhesion Enabled by Nano-Engineered Poly (ionic liquid)-Elastomeric Films: Leveraging Aqueous Lubrication and Elasticity

Zahra Mossayebi,^{ab} Paul A. Gurr,^a Ranya Simons^{*b} and Greg G. Qiao^{*a}

^a Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia. ^b CSIRO manufacturing, Melbourne, Victoria 3196, Australia.

E-mail: gregghq@unimelb.edu.au, Ranya.Simons@csiro.au

Supporting figures and tables for Results and Discussion

Fig. S1 ¹H NMR spectrum of the triblock copolymer of PDMS-*b*-(PNBMMA)₂ (P10 macrocrosslinker) in CDCl₃.

Table S1. Composition and molecular weight of the synthesized P5 and P10 macrocrosslinkers.

	Feeding ratio of		M _n (×	Conv.		
Designation	M: RAFT: I (mol)	DPn	¹ H NMR	GPC	- PDI	(%)
Р5	5:1:0.2	5	1.42	2.1	2.1	90
P10	10:1:0.2	9	1.54	2.4	1.8	91

Fig. S2 ¹H NMR spectrum of bis-(hydroxyethyloxypropyl) polydimethylsiloxane and norbornene-terminated PDMS macrocrosslinker (NB-PDMS-NB, P2) in CDCl₃.

Fig. S3 (a) Thickness estimation using AFM scratch technique, and (b) AFM height images of elastomers and PIL-infused elastomers.

Fig. S4 X-ray photoelectron spectroscopy (XPS) data (i.e., C1s and Si 2p high resolution spectra) of the substrate and surface-tethered E5 elastomer.

Table S2.	Elementa	l composition	(%) of the	substrate a	and E5 elast	omer obta	ined by
ssCAP _{ROME}	process of	letermined by	X-ray pho	toelectron.	spectrosco	py (XPS) a	analysis.

	Subs (Silicon	trate Wafer)	E5		Assignments
Atomic %	Mean	std	Mean	Std	
0	38.0	7.1	24.5	0.2	
N (total)	0.1	0.1	0.2	0.0	
N1			0.2	0.0	All organic N other than N^{\star} , NO _x
N2			0.0	0.0	N⁺
N3			0.0	0.0	NO _x
C (total)	5.6	0.2	56.1	0.2	
C1	0.0	0.0	37.4	0.7	C-Si
C2	3.8	0.2	11.9	0.8	С-С, С-Н
C3	1.3	0.2	4.0	0.0	C-N, C-O
C4	0.1	0.0	0.5	0.1	C=O, N-C=O
C5	0.4	0.0	2.1	0.1	0-C=0
Si	56.2	7.4	18.7	0.1	
Si1	34.4	8.6	0.1	0.1	Si ^o i.e., Si-Si
Si2	21.8	1.2	18.6	0.0	Siloxane, <u>SiOx</u>
Si2/Si1	0.6		289.7		Film thickness/contribution for the E5
Si2/C			0.33		PDMS assignment check in E5

Fig. S5 Energy Dispersive X-ray (EDX) analysis of the coatings: (a) E2 Elastomeric film, and (b) E2-L20 film demonstrating elemental mapping of silicon and chlorine over the surface of the film.

Table S3. Surface wettabilit	y results of the fabricated	elastomers and E2-L20	PIL-infused elastomer.
------------------------------	-----------------------------	-----------------------	------------------------

Designation	Static CA (°)	Advancing CA (°)	Receding CA (°)	Hysteresis (°)
E10	104.9 ± 2.7	110.3 ± 0.8	63.9 <u>±</u> 0.7	46.4 ± 3.0
E5	99.6 ± 1.4	106.7 ± 0.5	65.9 <u>+</u> 2.5	40.8 ± 8.8
E2	105.5 ± 0.5	110.1 ± 0.3	71.7 ± 0.9	38.4 ± 1.4
E2-L20	102.5 ± 3.5	109.5 ± 0.3	85.2 ± 1.7	26.5 ± 15.5

Fig. S6 Mechanical durability assessment of the E2-L20 PIL-infused film: (a) FESEM image of the surface after the crosshatch test, and (b) FESEM images of the films subjected to scratching with pencils of different hardness grades (i.e., pencil hardness test). The sequence of hardness ranges from hardest to softest: H, F, HB, B, 2B, 3B.