Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary Material

Enhanced energy efficiency in aqueous organic redox flow batteries: Carbon-based heterostructure electrodes guided by interface engineering strategy

Xiaohui Yang ^a, Xiong Li ^a, Tongle Xu ^a, Hongyun Cai ^{b,c}, Can Zhao ^c, Na Song ^a, Peng Ding ^{a *}

^a Research Center of Nanoscience and Nanotechnology, College of Sciences, Shangh ai University, 99 Shangda Road, Shanghai, 200444, PR China

^b Suqian Unitechem Co., LTD, 88 Yangzi Road, Suqian, 223800, PR China

^c Suqian time energy storage Technology Co., LTD, 67 Huashan Road, Suqian, 223800,

PR China

*Corresponding author, Email: dingpeng@shu.edu.cn

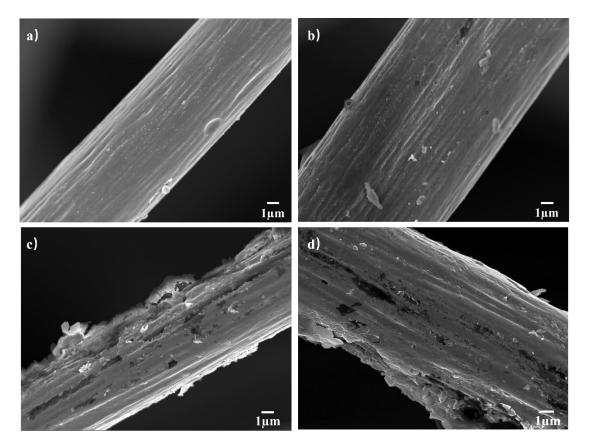


Fig. S1 SEM images of rGOCF-1(a, b) and rGOCF-5 (c, d).

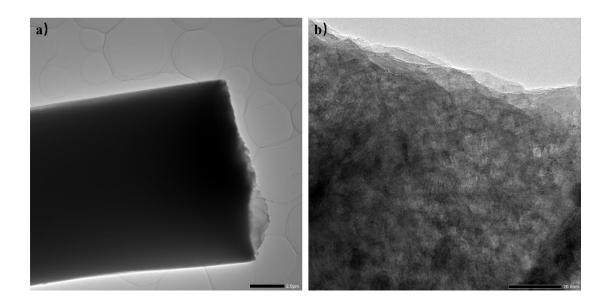


Fig. S2(a,b) The HRTEM images of CF.

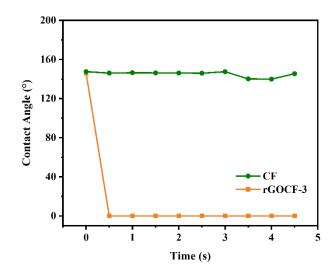


Fig. S3 Contact angles of CF and rGOCF-3.

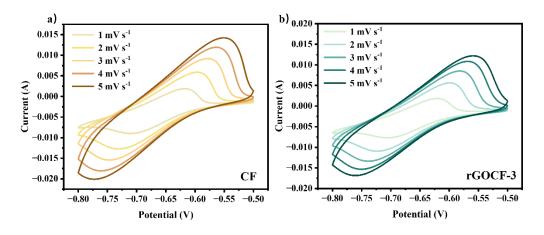


Fig. S4 CV curves of the CF (a) and rGOCF-3 (b) electrodes at various scan rates in negative reactions.

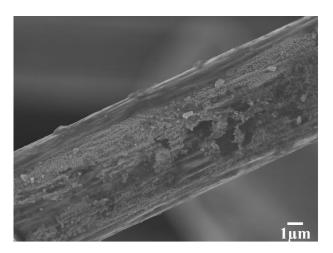


Fig. S5 The SEM images of rGOCF-3 after the cell test.

Electrode	Positive					Negative						
	I _{pa} (mA)	E _{pa} (V)	Ipc(mA)	E _{pc} (V)	$I_{ m pa}/I_{ m pc}$	ΔE(V)	I _{pa} (mA)	E _{pa} (V)	I _{pc} (mA)	E _{pc} (V)	$I_{ m pa}/I_{ m pc}$	ΔE(V)
CF	11.19	0.829	-8.86	0.651	1.26	0.178	1.87	-0.619	-7.74	-0.706	0.24	0.087
rGOCF-1	12.88	0.842	-10.55	0.639	1.22	0.203	1.75	-0.618	-8.55	-0.703	0.20	0.085
rGOCF-3	15.86	0.835	-13.57	0.644	1.16	0.191	2.21	-0.617	-8.79	-0.699	0.25	0.082
rGOCF-5	12.93	0.828	-10.94	0.647	1.18	0.181	2.36	-0.615	-8.32	-0.705	0.28	0.090

Table S1. Electrochemical properties obtained from CV curves of the positive and negative reactions on various electrodes.

		Positive		Negative			
Electrode	D_1 (cm ² s ⁻¹)	D ₂ (cm ² s ⁻¹)	k (cm s ⁻¹)	D_1 (cm ² s ⁻¹)	D_2 (cm ² s ⁻¹)	k (cm s ⁻¹)	
CF	2.9×10 ⁻⁴	1.94×10-4	2.37×10 ⁻²	8.38×10-6	1.44×10-4	2.98×10 ⁻²	
rGOCF-3	6.13×10 ⁻⁴	4.7×10 ⁻⁴	2.77×10 ⁻²	1.17×10 ⁻⁵	1.85×10 ⁻⁴	5.3×10 ⁻²	

(Note: D1 is the peak oxidation current, D2 is the peak reduction current)

Table S2. Electrochemical properties obtained from Equation S1-S3 of the positive and negative reactions on CF and rGOCF-3.

The Randles-Sevcik equation(Equation S1) and the Nicholson's method (Equation S2-3) are as follows:

When the measured solution temperature is 25°C :

$$i_{p} = 2.69 \times 10^{5} n^{\frac{3}{2}} A D^{\frac{1}{2}} C v^{\frac{1}{2}}$$
 (Equation S1)

$$\psi = \frac{-0.6288 + 0.0021 \triangle E_{p}}{1 - 0.0017 \triangle E_{p}}$$
 (Equation S2)

$$\psi = k \left(\frac{\pi D n F}{RT}\right)^{-\frac{1}{2}} v^{-\frac{1}{2}}$$
 (Equation S3)

In the formula, i_p represents the peak current in the cyclic voltammetry curve, with the unit is ampere; n is the number of electrons transferred in redox reaction; A is the area of the working electrode, in cm⁻²; D is the diffusion coefficient of the active substance, in cm² s⁻¹; C is the concentration of the active substance in the solution, in mol cm⁻³; v is the scanning rate set at that time, in Vs⁻¹; ΔE_p is the peak potential difference, in mV; F is Faraday's constant, in C mol⁻¹; R is the gas constant, in J K⁻¹ mol⁻¹; T is the thermodynamic temperature, in K; k is the electron transfer rate constant, in cm s⁻¹.

Energy efficiency (η) is the ratio of discharge energy to charge energy, expressed as a percentage. The calculation formula is as follows:

	$\eta = \left(E_{charge} \right)$	(Equation 54)				
Carbon electrode	Electrolyte type	Current density (mA cm ⁻²)	CE (%)	VE (%)	EE (%)	Ref
high temperature etching and carbon nanoparticles modified/GF	MV/4-HO- TEMPO	80	-	-	54.4	1
N/S heteroatoms and Ti doped WO ₃ modified/GF	DHAQ/ K4Fe(CN)6	40	70.64	-	-	2
rGO/GF	MV/4-HO- TEMPO	60	94.2	56.7	50.4	3
N/B codoped/GF	1,8-DHAQ/ K4Fe(CN)6	60	67.9	-	-	4
3D rGO/CP	MV/4-HO- TEMPO	50	82.17	57.29	46.15	5
Spherical mesoporous carbon modified/CC	AQS/BQDS	30	95.3	-	58.90	6
N ₂ Plasma treated/CF	Tiron/AQDS	60	-	62.4	62.1	7
PEG-rGO/CF	2,7-AQDS/ FerrocyanideFB	50	98.8	-	49.6	8
3D	MV/	50	99.5	80.1	80.1	This
heterostructure rGo/CF	ТЕМРТМА	70	99.4	73.4	73.3	work

 $\eta = \left(\frac{E_{discharge}}{E_{charge}}\right) \times 100\%$ (Equation S4)

Table S3. The comparison in the performances of AORFBs using carbon electrode.

References

- 1. C. T. Nie, H. J. Han, Y. H. Li, S. H. Zheng and Y. Wang, *ACS Appl. Nano. Mater.*, 2024, 7, 9950-9959.
- 2. X. Cai and C. Huang, *Electrochim. Acta*, 2024, **493**, 144382.
- 3. X. Li and C. Huang, *RSC Adv.*, 2020, **10**, 6333-6341.
- 4. J. Deng, X. Cai and C. Huang, *Energy Storage*, 2022, **5**, e435.
- 5. X. Li, J. Li, C. Huang and W. Zhang, *Electrochim. Acta*, 2019, **301**, 240-250.
- 6. W. Kakaen, L. Intakhuen, A. Siyasukh and K. Punyawudho, *Int. J. Hydrogen Energy*, 2021, **46**, 6448-6460.
- A. Permatasari, J. W. Shin, W. Lee, J. An and Y. Kwon, *Int. J. Energy Res.*, 2021, 45, 17878-17887.
- A. J. Molina-Serrano, J. M. Luque-Centeno, D. Sebastian, L. F. Arenas, T. Turek,
 I. Vela, F. Carrasco-Marin, M. J. Lazaro and C. Alegre, *ACS Appl Energy Mater*,
 2024, 7, 2779-2790.