Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

X-ray Detector with Ultra-low Detection Limit based on Bulk Two-dimensional Perovskite PEA₂PbBr₄ Single Crystals Grown in HBr Solution

Hao Dong^{a,b†}, Xin Liu^{b,c†}, Hu Wang^{b,c*}, Zhilong Chen^{b,d}, Fenghua Li^{b,c}, Pengxiang Wang^{b,c}, Jie Fu^{a,b}, and Yuchuan Shao^{a,b,c,e*}

^aSchool of Microelectronics, Shanghai University, Shanghai 201899, China
^bLaboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese
Academy of Sciences, Shanghai 201800, China
^cCenter of Materials Science and Optoelectronics Engineering, University of Chinese
Academy of Sciences, Beijing 100049, China
^dKey Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering
Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering,
East China University of Science and Technology, Shanghai 200237, China
^eSchool of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study,
UCAS, Hangzhou 310024, China

*Corresponding authors: {<u>wanghu@siom.ac.cn</u>; <u>shaoyuchuan@siom.ac.cn</u>} †Contributed equally.

Fig. S1. Nucleation curve of PEA_2PbBr_4 precursor with solute ratios of $PEABr:PbBr_2 = 2:1$ in HBr.

Fig. S2. Crystal thickness comparison of fragile and bulk PEA_2PbBr_4 . The fragile PEA_2PbBr_4 are grown from the precursor solution with stoichiometric ratio of PEABr:PbBr2 = 2:1. The bulk PEA_2PbBr_4 are grown from the precursor solution with stoichiometric ratio of PEABr:PbBr2 = 2:3.

Fig. S3. Linear attenuation coefficients (absorption) of PEA_2PbBr_4 , Si, α -Se, CdZnTe and MAPbBr₃ versus different X-ray photons energy.

Fig. S4. AFM morphology images of bulk PEA₂PbBr₄ single crystal

Fig. S5. 365 nm ultraviolet light responses of Au/PEA₂PbBr₄/Au. This measurement serves as a preliminary assessment to determine whether the device exhibits a valid photo response.

Fig. S6. 365 nm ultraviolet light responses (0.13 mW cm⁻²) of Au/PEA₂PbBr₄/Au

Fig. S7. hole and electron signal currents of Au/PEA₂PbBr₄/Au under 365 nm ultraviolet light

Fig. S8. Photoconductivity measurement for electron under 0.13 mW cm^{-2} ultraviolet LED (365 nm) illumination

Time (s) Fig. S9. Temporal response of $Au/PEA_2PbBr_4/Au$ device under ultraviolet LED (365 nm) pulsed illumination

Fig. S10. X-ray responses of Au/PEA₂PbBr₄/Au with dose rates from 118.4 to 3.682 nGy_{air} s⁻¹ at 100V

Device structure	Crystal growth method	Crystal Thickness [mm]	Resistivity [Ω cm]	Noise current [nA Hz ^{-1/2}]	μτ product [cm² V ⁻¹]	Sensitivity [µC Gy _{air} - ¹ cm ⁻²]	Bias for sensitivity [V]	Detection limit [nGy _{air} s ⁻¹]	X-ray [keV]	Ref.
Au/ (F-PEA)₂Pbl₄/ C60/BCP/Cr	STLª) in GBL	2	1.36 × 10 ¹²	<0.25	5.1× 10-4	3,402	200	23	120	1
Au/ [Cu(O ₂ C- (CH ₂) ₃ - (NH ₃) ₂]PbBr ₄ / C60/BCP/Cr	slow evaporation	1.2	8.85 × 10 ¹¹	10-4	1	114,000	960	56	120	2
Au/BA₂PbBr₄/Au	STL in HBr	0.16	8.51 × 10 ¹¹	/	1.1 × 10⁻⁵	726.18	150	8.2	50	3
planar Au/ (PA)₄AgBiBr ₈	slow evaporation	2.2	/	1	/	6.89	40	<5,000,00 0	40	4
Au/ (BDA)Pbl₄/ Au	STL in HI	1	1	1	4.43 × 10 ⁻⁴	242	10	430	40	5
Au/ BA₂EA₂Pb₃Br₁₀/ Au	STL in HBr	2	4.5 × 10 ¹⁰	1	1.0 × 10 ⁻²	6,800	10	5,500	70	6
Au/ (BA)₂CsAgBiBr ₇ / Au	STL in HBr	3	1.5 × 10 ¹¹	I	1.21 × 10 ⁻³	4.2	10	1	70	7
planar Au/ (DGA)Pbl₄	STL in HI	1	1	1	4.12 × 10 ⁻³	4869	60	95.4	40	8
Au/ PEA₂PbBr₄/Au	STL in HBr	1	1.25 × 10 ¹²	10 ⁻⁵	1.0 × 10 ⁻³	2998	100	0.79	30	This work

Table S1. Summary of	performance for X-ray	detectors based	on 2D perovskite	e single
crystals.				

^{a)}Abbreviations: STL, Solution temperature-lowering.

Device structure	Detection limit [nGy _{air} s ⁻¹]	X-ray [keV]	Ref.
Au/Al/BCP/C ₆₀ /CsPbBr ₃ /Au	200	30	9
Au/MAPbl ₃ /Au	1.5	22	10
Au/MAPbBr₃/C₀₀/BCP/Ag or Au	500	22	11
Cr/MAPbBr _{2.94} Cl _{0.06} /C ₆₀ /BCP/C r	7.6	8	12
Au/Cs ₂ AgBiBr ₆ /Au	45.7	50	13

Table 52. Summary of detection minit for typical 5D perovskite SC A-ray detect	Table S2. S	ummary of	detection li	mit for t	vpical 3D	perovskite SC X-ray	y detectors.
---	-------------	-----------	--------------	-----------	-----------	---------------------	--------------

References

- 1 H. Li, J. Song, W. Pan, D. Xu, W. Zhu, H. Wei and B. Yang, *Adv. Mater.*, 2020, **32**, 2003790.
- 2 K. Guo, W. Li, Y. He, X. Feng, J. Song, W. Pan, W. Qu, B. Yang and H. Wei, *Angew. Chem. Int. Ed.*, 2023, **62**, e202303445.
- 3 X. Xu, Y. Wu, Y. Zhang, X. Li, F. Wang, X. Jiang, S. Wu and S. Wang, *ENERGY Environ. Mater.*, 2023, e12487.
- 4 P. Liu, Y. Xiao, Z. Yang, S. Yu and X. Meng, *Opt. Mater.*, 2022, **133**, 112972.
- 5 Y. Shen, Y. Liu, H. Ye, Y. Zheng, Q. Wei, Y. Xia, Y. Chen, K. Zhao, W. Huang and S. (Frank) Liu, *Angew. Chem. Int. Ed.*, 2020, **59**, 14896–14902.
- 6 C. Ji, S. Wang, Y. Wang, H. Chen, L. Li, Z. Sun, Y. Sui, S. Wang and J. Luo, *Adv. Funct. Mater.*, 2020, **30**, 1905529.
- 7 Z. Xu, X. Liu, Y. Li, X. Liu, T. Yang, C. Ji, S. Han, Y. Xu, J. Luo and Z. Sun, *Angew. Chem. Int. Ed.*, 2019, **58**, 15757–15761.
- 8 B. Zhang, T. Zheng, J. You, C. Ma, Y. Liu, L. Zhang, J. Xi, G. Dong, M. Liu and S. (Frank) Liu, *Adv. Mater.*, 2023, **35**, 2208875.
- 9 Z. Chen, H. Wang, F. Li, W. Zhang, Y. Shao and S. Yang, ACS Appl. Mater. Interfaces, 2023, 15, 51370–51379.
- Y. Song, L. Li, W. Bi, M. Hao, Y. Kang, A. Wang, Z. Wang, H. Li, X. Li, Y. Fang, D. Yang and Q. Dong, *Research*, 2020, 2020, 2020/5958243.
- 11 H. Wei, D. DeSantis, W. Wei, Y. Deng, D. Guo, T. J. Savenije, L. Cao and J. Huang, *Nat. Mater.*, 2017, **16**, 826–833.
- 12 H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang, C. Wang, B. R. Ecker, Y. Gao, M. A. Loi, L. Cao and J. Huang, *Nat. Photonics*, 2016, **10**, 333–339.
- 13 L. Yin, H. Wu, W. Pan, B. Yang, P. Li, J. Luo, G. Niu and J. Tang, *Adv. Opt. Mater.*, 2019, **7**, 1900491.