Phosphorus flame retardant-fixed in situ gel polymer electrolyte for safety-enhanced and superior electrochemical performance lithium metal battery

Hao Yu[†], Su Wang[†], Yan Zhang, Yanrui Pan, Zhaokun Wang, Chen Li, Yue Ma*,

Dawei Song, Hongzhou Zhang, Xixi Shi, Chunliang Li*, Lianqi Zhang*

School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

[†]These authors contribute equally to this work

^{*}Corresponding author. *E-mail:* <u>MY18002118645@163.com</u> (Y. Ma), <u>chunliang1123@163.com</u> (C. Li), <u>tianjinzhanglq@163.com</u> (L. Zhang).

Fig. S1. Structure diagram of FGPE.

Fig. S2. Optical images comparison before and after FGPE polymerization.

Fig. S3. FTIR spectra of LiDFOB/EC/DMC, DMF, and DMF+FGPE.

Fig. S4. GPC analysis of FGPE polymer.

Fig. S5. Typical SEM image of cellulose film.

Fig. S6. C, O, F and N elements EDS mappings of FGPE.

Fig. S7. TG curves of PEGDA, PEGMEMA, LiDFOB and DOPO.

Fig. S8. Open combustion tests of FGPE-2, FGPE-4 and FGPE-6.

Fig. S9. Open combustion tests of FGPE-8 and FGPE-10.

Fig. S10. The self-extinguishing time of GPE, FGPE-2, FGPE-4, FGPE-6, FGPE-8 and FGPE-10.

$$\begin{array}{c} P_4+2O_2 {\rightarrow} 4PO {\cdot} \\ H_3PO_4 {\rightarrow} HPO_2 {+} HPO {+} PO {\cdot} \\ H {\cdot} {+} PO {\cdot} {\rightarrow} HPO \\ H {\cdot} {+} HPO {\rightarrow} H_2 {+} PO {\cdot} \\ 2OH {\cdot} {+} PO {\cdot} {\rightarrow} HPO {+} H_2O \\ OH {+} H_2 {+} PO {\cdot} {\rightarrow} HPO {+} H_2O \end{array}$$
Fig. S11. Flame retardant principle of DOPO.

Fig. S12. The ion conductivity dependence of SS/FGPE/SS symmetrical cells with DOPO content of 2%, 4%, 6%, and 10% in the temperature range of 30-90°C.

Fig. S13. LSV profile of SS/LE/SS symmetrical cell.

Fig. S14. Current-time profiles of Li/LE/Li symmetrical cell, the insert showing the EIS profiles before and after polarization.

Fig. S15. Impedance changes of (a) Li/FGPE/Li and (b) Li/LE/Li symmetrical cells during different storage times.

Fig. S16. Selected polarization voltage profiles of Li/FGPE/Li symmetric cell with a current density of 0.2 mA cm⁻² at different testing times.

Fig. S17. SEM images of cycled Li anode in (a) Li/FGPE/Li and (b) Li/LE/Li symmetric cells after 600 h at the current density of 0.2 mA cm⁻².

Fig. S18. Cross-sectional SEM images of cycled Li anode in (a) Li/FGPE/Li and (b) Li/LE/Li symmetric cells after cycling at the current density of 0.2 mA cm⁻².

Fig. S19. Charge/discharge profiles of LFP/FGPE/Li battery at 0.2C.

Fig. S20. Charge/discharge profiles of LFP/LE/Li battery at 0.2C.

Fig. S21. Charge/discharge profiles of LFP/LE/Li battery at 0.2C.

Fig. S22. Charge/discharge profiles of NCM811/LE/Li battery at 0.2C.

Fig. S23. XPS spectrum of P 2p for Li anode of cycled LFP/FGPE/Li battery.

Fig. 24. (a-d) Powering LED lamps test and (e-h) voltage test of LFP/FGPE/graphite pouch cell under fully-charged rest state, twisting, hammer striking and cutting.

Table S1. Electrochemical performances of phosphorus flame retardant applied to g	gel polymer
---	-------------

Polymerization strategy	Monomer	Ionic conductivity (mS cm ⁻¹)	Capacity (mAh g ⁻¹)	Capacity retention	Flame retardant ratio	Flame retardant effect	Ref.
Free radical polymerization	PEGDA/ PEGMEMA/ DOPO	1.13 (RT)	LFP 165.7, 0.1C 160.4, 0.2C	99% (300 cycles) 99.7% (300 cycles)	8%	Flame contact for 190 s without ignition	This work
UV curing	PUA/SN/ Al ₂ O ₃ /DOPO	0.266 (RT)	LFP 144.6, 0.2C	96.3% (100 cycles)	4%	Flame contact is ignited for 5 s and extinguished after 3 s	[ref.1]
	TTE/DOPO in carbonate electrolyte	About 5.7 (RT)	LFP 152, 0.2C	99.7% (65 cycles)	5%	Flame contact without ignition	[ref.2]
Free radical polymerization	PEG/KH560/ DOPO	0.0298 (RT)	LFP 130.7, 0.2C, 60°C	About 99% (200 cycles)	13.67%	Flame contact without ignition	[ref.3]
Free radical polymerization	VC/TEP	4.4 (RT)	LFP 147, 0.5C	98.7% (300 cycles)	50%	Flame contact for 1 s without ignition	[ref.4]
Free radical polymerization	TAEP/ PEGDMA	0.51 (RT)	LFP 138, 0.5C	About 92% (300 cycles)	7.5%	Flame contact for 10 s without ignition	[ref.5]

electrolytes in previous reports.

Reference

- 1. ACS Appl. Energy Mater. 2022, 5, 7199–7209.
- 2. ACS Appl. Energy Mater. 2022, 5, 10465–10472.
- 3. Polymers 2020, 12, 2937.
- 4. Energy Storage Mater. 39 (2021) 186–193.
- 5. Adv. Funct. Mater. 2022, 32, 2203006.