Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Crystal Structure, Stability and Li Superionic Conductivity of Pyrochlore-Type Solid Electrolyte Li_{2-x}La(_{1+x)/3}Nb₂O₆F: A First-Principles Calculation Study

Randy Jalem,^{1,*} Kazunori Takada,¹ Hitoshi Onodera², and Shuhei Yoshida²

¹Center for Green Research on Energy and Environmental Materials (GREEN), National Institute for

Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

²Environment Neutral System Development Division, DENSO CORPORATION, 1 Yoshiike, Kusagi,

Agui-cho, Chita-gun, Aichi 470-2298, Japan

Email: JALEM.Randy@nims.go.jp

Material synthesis

The Li_{1.25}La_{0.58}Nb₂O₆F (LLNOF) solid electrolyte was prepared using the following synthesis conditions. Li₂CO₃, La₂O₃ and Nb₂O₅ reactant powders in stoichiometric ratio were calcined at 773 K and then heated at 1473 K for 6 hours to synthesize the precursor Li_{0.5}La_{0.5}Nb₂O₆. Next, the synthesized Li_{0.5}La_{0.5}Nb₂O₆ was mixed with LaF₃ and LiF. Here, 91%-excess LiF was added. The mixture was then heated at 1273 K for 6 hours to synthesize the target LLNOF powder.

Cyclic voltammetry measurement

The LLNOF electrolyte, acetylene black (AB) (conductive additive), and polyvinylidene fluoride (PVDF) (binder) were weighed in a mass ratio of 70:10:20 and then mixed with N-methyl-2-pyrrolidone (NMP) to form a paste. The paste was applied onto a copper foil and dried to make an electrode. The cyclic voltammetry evaluation was conducted using a 2032-type coin cell assembled with a Li anode. The electrolyte used was a solution of 1M LiPF₆ dissolved in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DEC) in a volume ratio of 1:1. The coin cells were assembled in an Ar atmosphere inside a glove box. Cyclic voltammetry measurements were performed using a potentiostat/galvanostat device, with a scan voltage range of 0.02 V to 3V and a scan rate of 10 mV/s at 25°C.

Figure S1. Visualization of the local structure of pyrochlore-type $Li_{2-x}La(_{1+x)/3}Nb_2O_6F$ (LLNOF) showing the F-Li/La-F linkage in a zigzag pattern along the characteristic hexagonal tunnel. The octahedral NbO₆ units are not displayed for clarity.

Figure S2. Cyclic voltammetry curves for the 1st, 2nd, and 3rd cycle of cell with LLNOF solid electrolyte.

Figure S3. Mean squared displacement (MSD) plots for (a) each atom types at 1000 K and (b) Li atoms in pyrochlore-type Li_{1.3125}La_{0.5625}Nb₂O₆F with the L1 structure (LLNOF-L1) from by NVT-AIMD calculations.

Figure S4. Supercell operation of the 16*d*-site cation sublattice in the $Li_{2-x}La(_{1+x})_3Nb_2O_6F$ crystal structure for use in the calculation of Li^+ percolation threshold.

Figure S5. Li-Li radial distribution function (RDF) profiles derived from 1000-K NVT AIMD calculations for (a) pyrochlore-type $Li_{1.3125}La_{0.5625}Nb_2O_6F$ with the L1 structure (LLNOF-L1) and (b) garnet-type cubic $Li_7La_3Zr_2O_{12}$.

Figure S6. Plot for DFT decomposition energy as a function of the number of LiF Schottky defect units. The initial reference structure was based on $Li_{1.3125}La_{0.5625}Nb_2O_6F$ composition (L1 structure, supercell formula is $Li_{21}La_9Nb_{32}O_{96}F_{16}$ which is for x = 0).

Figure S7. DFT-GGA electronic density of states (DOS) of pyrochlore-type $Li_{1.3125}La_{0.5625}Nb_2O_6F$ (LLNOF-L1 structure). The Fermi energy is referenced as zero in the horizontal axis.

Atom	Site	Occupancy (g)		Coordinates	
			X	У	Z
La	16d	0.2771(6)	1/2	1/2	1.2
Li	16d	0.365(15)	x(La)	y(La)	z(La)
Nb	16c	1.0	0	0	0
0	48f	1.0	0.3151(2)	1/8	1/8
F	8b	0.989(8)	3/8	3/8	3/8

Table S1. Crystal structure coordinate data of LLNOF by XRD Rietveld analysis, as reported in Ref. 12. Space group: Fd^3m (cubic), lattice parameter *a*: 1.0445(1) nm, cell volume: 1.1396(1) nm³.

Voltage / V vs. Li/Li ⁺	Decomposition reaction
0-0.54	$Li_{21}La_9Nb_{32}(O_6F)_{16} + 160 Li \rightarrow 4.5 La_2O_3 + 16 LiF + 82.5 Li_2O + 32 Nb$
0.54 - 0.62	$Li_{21}La_9Nb_{32}(O_6F)_{16} + 64 Li \rightarrow 4.5 La_2O_3 + 32 LiNbO_2 + 16 LiF + 18.5$
	Li ₂ O
0.62 - 0.96	$Li_{21}La_9Nb_{32}(O_6F)_{16} + 49.2 Li \rightarrow 3.7 Li_8Nb_2O_9 + 4.5 La_2O_3 + 24.6$
	$LiNbO_2 + 16 LiF$
0.96 - 0.99	$Li_{21}La_9Nb_{32}(O_6F)_{16} + 45.5 Li \rightarrow 4.5 La_2O_3 + 22.75 LiNbO_2 + 9.25$
	$Li_3NbO_4 + 16 LiF$
0.99 – 1.33	$Li_{21}La_9Nb_{32}(O_6F)_{16} + 41 Li \rightarrow 20.5 LiNbO_2 + 11.5 Li_3NbO_4 + 7 LiF + 9$
	LaOF
1.33 – 1.74	$\mathrm{Li}_{21}\mathrm{La}_{9}\mathrm{Nb}_{32}(\mathrm{O}_{6}\mathrm{F})_{16} + 32 \mathrm{Li} \rightarrow 16 \mathrm{Li}\mathrm{Nb}\mathrm{O}_{2} + 9 \mathrm{La}\mathrm{Nb}\mathrm{O}_{4} + 7 \mathrm{Li}_{3}\mathrm{Nb}\mathrm{O}_{4} + $
	16 LiF
1.74 – 1.92	$Li_{21}La_9Nb_{32}(O_6F)_{16} + 18 Li \rightarrow 14 LiNbO_3 + 9 LiNbO_2 + 9 LaNbO_4 + 16$
	LiF
1.92 - 2.35	$Li_{21}La_9Nb_{32}(O_6F)_{16} + 2.571 Li \rightarrow 7.571 LiNbO_3 + 1.286 Nb_{12}O_{29} + 9$
	LaNbO ₄ + 16 LiF
2.35 - 2.49	$Li_{21}La_9Nb_{32}(O_6F)_{16} + 0.8889 Li \rightarrow 5.889 LiNb_3O_8 + 0.4444 Nb_{12}O_{29} + 9$
	LaNbO ₄ + 16 LiF
2.49 - 3.92	$Li_{21}La_9Nb_{32}(O_6F)_{16} \rightarrow 5 LiNb_3O_8 + 9 LaNbO_4 + 4 Nb_2O_5 + 16 LiF$
3.92 - 3.93	$Li_{21}La_9Nb_{32}(O_6F)_{16} \rightarrow 9 LaNbO_4 + 11.5 Nb_2O_5 + 16 LiF + 1.25 O_2 + 5$
	Li
3.93 -	$Li_{21}La_9Nb_{32}(O_6F)_{16} \rightarrow 3.667 LaNbO_4 + 14.17 Nb_2O_5 + 5.333 LaF_3 +$
	5.25 O ₂ + 21 Li

Table S2. Summary of DFT-predicted decomposition reactions related to the voltage stability window of pyrochlore-type $Li_{1.3125}La_{0.5625}Nb_2O_6F$ with the L1 structure (LLNOF-L1).

Table S3. Summary of DFT-predicted decomposition reactions related to the voltage stability window of $Li_3Nb_3O_8$ which is one of the decomposition phases of pyrochlore-type $Li_{1.3125}La_{0.5625}Nb_2O_6F$ with the L1 structure (LLNOF-L1).

Voltage / V vs. Li/Li ⁺	Decomposition reaction
0-0.54	$4 \operatorname{LiNb_3O_8} + 60 \operatorname{Li} \rightarrow 32 \operatorname{Li_2O} + 12 \operatorname{Nb}$
0.54 - 0.62	$4 \operatorname{LiNb_3O_8} + 24 \operatorname{Li} \rightarrow 12 \operatorname{LiNbO_2} + 8 \operatorname{Li_2O}$
0.62 - 0.96	4 LiNb ₃ O ₈ + 17.6 Li → 1.6 Li ₈ Nb ₂ O ₉ + 8.8 LiNbO ₂
0.96 - 1.74	$4 \operatorname{LiNb_3O_8} + 16 \operatorname{Li} \rightarrow 4 \operatorname{Li_3NbO_4} + 8 \operatorname{LiNbO_2}$
1.74 - 1.92	$4 \operatorname{LiNb_3O_8} + 8 \operatorname{Li} \rightarrow 8 \operatorname{LiNbO_3} + 4 \operatorname{LiNbO_2}$

1.92 – 2.35	4 LiNb ₃ O ₈ + 1.143 Li → 5.143 LiNbO ₃ + 0.5714 Nb ₁₂ O ₂₉
2.35 - 3.92	$4 \operatorname{LiNb_3O_8} \rightarrow 4 \operatorname{LiNb_3O_8}$
3.92 -	$4 \operatorname{LiNb_3O_8} \rightarrow 6 \operatorname{Nb_2O_5} + \operatorname{O_2} + 4 \operatorname{Li}$

Table S4. Summary of DFT-predicted decomposition reactions related to the voltage stability window of LiF which is one of the decomposition phases of pyrochlore-type $Li_{1.3125}La_{0.5625}Nb_2O_6F$ with the L1 structure (LLNOF-L1).

Voltage / V vs. Li/Li ⁺	Decomposition reaction
0-6.36	$LiF \rightarrow LiF$
6.36 -	$\text{LiF} \rightarrow 0.5 \text{ F}_2 + \text{Li}$

Table S5. Summary of DFT-predicted decomposition reactions related to the voltage stability window of LaNbO₄ which is one of the decomposition phases of pyrochlore-type $Li_{1.3125}La_{0.5625}Nb_2O_6F$ with the L1 structure (LLNOF-L1).

Voltage / V vs. Li/Li ⁺	Decomposition reaction
0-0.54	2 LaNbO ₄ + 10 Li → 5 Li ₂ O + La ₂ O ₃ + 2 Nb
0.54 - 0.62	2 LaNbO ₄ + 4 Li → 2 LiNbO ₂ + Li ₂ O + La ₂ O ₃
0.62 - 0.96	2 LaNbO ₄ + 3.2 Li → 1.6 LiNbO ₂ + 0.2 Li ₈ Nb ₂ O ₉ + La ₂ O ₃
0.96 - 1.06	2 LaNbO ₄ + 3 Li → 0.5 Li ₃ NbO ₄ + 1.5 LiNbO ₂ + La ₂ O ₃
1.06 - 1.30	2 LaNbO ₄ + 2 Li → 0.3333 Li ₃ NbO ₄ + 0.6667 La ₃ NbO ₇ + LiNbO ₂
1.30 -	$2 \text{ LaNbO}_4 \rightarrow 2 \text{ LaNbO}_4$

Table S6. Summary of DFT-predicted decomposition reactions related to the voltage stability window of Nb₂O₅ which is one of the decomposition phases of pyrochlore-type $Li_{1.3125}La_{0.5625}Nb_2O_6F$ with the L1 structure (LLNOF-L1).

Voltage / V vs. Li/Li ⁺	Decomposition reaction
0-0.54	14 Nb ₂ O ₅ + 140 Li → 70 Li ₂ O + 28 Nb
0.54 - 0.62	14 Nb ₂ O ₅ + 56 Li → 28 LiNbO ₂ + 14 Li ₂ O
0.62 - 0.96	14 Nb ₂ O ₅ + 44.8 Li → 2.8 Li ₈ Nb ₂ O ₉ + 22.4 LiNbO ₂
0.96 - 1.74	14 Nb ₂ O ₅ + 42 Li → 7 Li ₃ NbO ₄ + 21 LiNbO ₂
1.74 – 1.92	14 Nb ₂ O ₅ + 28 Li → 14 LiNbO ₃ + 14 LiNbO ₂
1.92 - 2.35	$14 \text{ Nb}_2\text{O}_5 + 4 \text{ Li} \rightarrow 4 \text{ LiNbO}_3 + 2 \text{ Nb}_{12}\text{O}_{29}$

2.35 - 2.49	14 Nb ₂ O ₅ + 3.111 Li → 3.111 LiNb ₃ O ₈ + 1.556 Nb ₁₂ O ₂₉
2.49 -	$14 \text{ Nb}_2\text{O}_5 \rightarrow 14 \text{ Nb}_2\text{O}_5$

Table S7. Summary of DFT-predicted decomposition reactions related to the voltage stability window of garnet-type cubic $Li_7La_3Zr_2O_{12}$.

Voltage / V vs. Li/Li ⁺	Decomposition reaction
0-0.04	$4 \operatorname{Li}_7 \operatorname{La}_3 \operatorname{Zr}_2 \operatorname{O}_{12} + 28 \operatorname{Li} \xrightarrow{\bullet} 2 \operatorname{Zr}_4 \operatorname{O} + 28 \operatorname{Li}_2 \operatorname{O} + 6 \operatorname{La}_2 \operatorname{O}_3$
0.04 - 0.05	4 Li ₇ La ₃ Zr ₂ O ₁₂ + 26.67 Li → 2.667 Zr ₃ O + 27.33 Li ₂ O + 6 La ₂ O ₃
0.05 - 2.90	$4 \operatorname{Li}_7 \operatorname{La}_3 \operatorname{Zr}_2 \operatorname{O}_{12} \rightarrow 4 \operatorname{Li}_6 \operatorname{Zr}_2 \operatorname{O}_7 + 2 \operatorname{Li}_2 \operatorname{O} + 6 \operatorname{La}_2 \operatorname{O}_3$
2.90 - 3.16	$4 \operatorname{Li}_7 \operatorname{La}_3 \operatorname{Zr}_2 \operatorname{O}_{12} \rightarrow 4 \operatorname{Li}_6 \operatorname{Zr}_2 \operatorname{O}_7 + \operatorname{Li}_2 \operatorname{O}_2 + 6 \operatorname{La}_2 \operatorname{O}_3 + 2 \operatorname{Li}_6 \operatorname{La}_2 \operatorname{La}$
3.16 - 3.24	$4 \operatorname{Li}_7 \operatorname{La}_3 \operatorname{Zr}_2 \operatorname{O}_{12} \rightarrow 7 \operatorname{Li}_2 \operatorname{O}_2 + 4 \operatorname{La}_2 \operatorname{Zr}_2 \operatorname{O}_7 + 2 \operatorname{La}_2 \operatorname{O}_3 + 14 \operatorname{Li}$
3.24 - 3.72	$4 \text{ Li}_{7}\text{La}_{3}\text{Zr}_{2}\text{O}_{12} \rightarrow 1.75 \text{ LiO}_{8} + 4 \text{ La}_{2}\text{Zr}_{2}\text{O}_{7} + 2 \text{ La}_{2}\text{O}_{3} + 26.25 \text{ Li}$
3.72 -	$4 \operatorname{Li}_7 \operatorname{La}_3 \operatorname{Zr}_2 \operatorname{O}_{12} \rightarrow 4 \operatorname{La}_2 \operatorname{Zr}_2 \operatorname{O}_7 + 2 \operatorname{La}_2 \operatorname{O}_3 + 7 \operatorname{O}_2 + 28 \operatorname{Li}$

Table S8. Summary of DFT-predicted decomposition reactions related to the voltage stability window of $Li_6Zr_2O_7$ which is one of the decomposition phases of garnet-type $Li_7La_3Zr_2O_{12}$ (LLZO).

Voltage / V vs. Li/Li ⁺	Decomposition reaction
0-0.04	$2 \operatorname{Li}_{6} \operatorname{Zr}_{2} \operatorname{O}_{7} + 14 \operatorname{Li} \xrightarrow{} \operatorname{Zr}_{4} \operatorname{O} + 13 \operatorname{Li}_{2} \operatorname{O}$
0.04 - 0.05	2 $\text{Li}_6\text{Zr}_2\text{O}_7$ + 13.33 $\text{Li} \rightarrow$ 1.333 Zr_3O + 12.67 Li_2O
0.05 - 3.21	$2 \operatorname{Li}_{6} Zr_{2} O_{7} \rightarrow 2 \operatorname{Li}_{6} Zr_{2} O_{7}$
3.21 - 3.24	$2 \operatorname{Li}_{6} Zr_{2}O_{7} \rightarrow 4 \operatorname{Li}_{2} ZrO_{3} + \operatorname{Li}_{2}O_{2} + 2 \operatorname{Li}$
3.24 - 3.39	$2 \operatorname{Li}_{6} \operatorname{Zr}_{2} \operatorname{O}_{7} 4 \operatorname{Li}_{2} \operatorname{Zr}_{3} + 0.25 \operatorname{LiO}_{8} + 3.75 \operatorname{Li}$
3.39 - 3.72	$2 \operatorname{Li}_{6} \operatorname{Zr}_{2} \operatorname{O}_{7} 0.75 \operatorname{LiO}_{8} + 4 \operatorname{ZrO}_{2} + 11.25 \operatorname{Li}$
3.72 -	$2 \operatorname{Li}_{6} \operatorname{Zr}_{2} \operatorname{O}_{7} \xrightarrow{} 4 \operatorname{Zr}_{2} + 3 \operatorname{O}_{2} + 12 \operatorname{Li}$

Table S9. Summary of DFT-predicted decomposition reactions related to the voltage stability window of Li_2O which is one of the reductive decomposition phases of garnet-type $Li_7La_3Zr_2O_{12}$ (LLZO).

Voltage / V vs. Li/Li ⁺	Decomposition reaction
0 - 2.90	$Li_2O \rightarrow Li_2O$
2.90-3.24	$Li_2O \rightarrow 0.5 Li_2O_2 + Li$

3.24 - 3.72	$\text{Li}_2\text{O} \rightarrow 0.125 \text{ LiO}_8 + 1.875 \text{ Li}$
3.72 -	$Li_2O \rightarrow 0.5 O_2 + 2 Li$

Table S10. Summary of DFT-predicted decomposition reactions related to the voltage stability window of La_2O_3 which is one of the reductive decomposition phases of garnet-type $Li_7La_3Zr_2O_{12}$ (LLZO).

Voltage / V vs. Li/Li ⁺	Decomposition reaction
0	$La_2O_3 \rightarrow La_2O_3$

Table S11. Summary of DFT-predicted decomposition reactions related to the voltage stability window of garnet-type $Li_5La_3Ta_2O_{12}$ (LLTO).

Voltage / V vs. Li/Li ⁺	Decomposition reaction
0-0.35	$4 \operatorname{Li}_{5}\operatorname{La}_{3}\operatorname{Ta}_{2}\operatorname{O}_{12} + 40 \operatorname{Li} \rightarrow 30 \operatorname{Li}_{2}\operatorname{O} + 6 \operatorname{La}_{2}\operatorname{O}_{3} + 8 \operatorname{Ta}$
0.35 - 0.55	$4 \operatorname{Li}_{5}\operatorname{La}_{3}\operatorname{Ta}_{2}\operatorname{O}_{12} + 10 \operatorname{Li} \rightarrow 6 \operatorname{Li}_{5}\operatorname{Ta}\operatorname{O}_{5} + 6 \operatorname{La}_{2}\operatorname{O}_{3} + 2 \operatorname{Ta}$
0.55 - 0.65	4 Li ₅ La ₃ Ta ₂ O ₁₂ + 2.5 Li → 7.5 Li ₃ TaO ₄ + 6 La ₂ O ₃ + 0.5 Ta
0.65 - 3.23	$4 \operatorname{Li}_{5}\operatorname{La}_{3}\operatorname{Ta}_{2}\operatorname{O}_{12} \xrightarrow{} 6.667 \operatorname{Li}_{3}\operatorname{Ta}_{4} + 1.333 \operatorname{La}_{3}\operatorname{Ta}_{7} + 4 \operatorname{La}_{2}\operatorname{O}_{3}$
3.23 - 3.24	$4 \operatorname{Li}_{5}\operatorname{La}_{3}\operatorname{Ta}_{2}\operatorname{O}_{12} \xrightarrow{} 4 \operatorname{La}_{3}\operatorname{Ta}_{7} + 2 \operatorname{Li}_{2}\operatorname{O}_{2} + 4 \operatorname{Li}_{3}\operatorname{Ta}_{4} + 4 \operatorname{Li}_{3}$
3.24 - 3.47	$4 \operatorname{Li}_{5}\operatorname{La}_{3}\operatorname{Ta}_{2}\operatorname{O}_{12} \xrightarrow{} 0.5 \operatorname{LiO}_{8} + 4 \operatorname{La}_{3}\operatorname{TaO}_{7} + 4 \operatorname{Li}_{3}\operatorname{TaO}_{4} + 7.5 \operatorname{Li}_{3}$
3.47 - 3.72	$4 \operatorname{Li}_{5}\operatorname{La}_{3}\operatorname{Ta}_{2}\operatorname{O}_{12} \xrightarrow{} 1.25 \operatorname{LiO}_{8} + 2 \operatorname{La}_{3}\operatorname{TaO}_{7} + 6 \operatorname{La}\operatorname{TaO}_{4} + 18.75 \operatorname{Li}$
3.72 -	$4 \operatorname{Li}_{5}\operatorname{La}_{3}\operatorname{Ta}_{2}\operatorname{O}_{12} \xrightarrow{} 2 \operatorname{La}_{3}\operatorname{Ta}\operatorname{O}_{7} + 6 \operatorname{La}\operatorname{Ta}\operatorname{O}_{4} + 5 \operatorname{O}_{2} + 20 \operatorname{Li}$

Table S12. Summary of DFT-predicted decomposition reactions related to the voltage stability window of Li_3TaO_4 which is one of the reductive decomposition phases of garnet-type $Li_5La_3Ta_2O_{12}$ (LLTO).

Voltage / V vs. Li/Li+	Decomposition reaction
0-0.35	$Li_3TaO_4 + 5 Li \rightarrow 4 Li_2O + Ta$
0.35 - 0.55	$Li_3TaO_4 + Li \rightarrow 0.8 Li_5TaO_5 + 0.2 Ta$
0.55 - 3.59	$Li_3TaO_4 \rightarrow Li_3TaO_4$
3.59 - 3.72	$Li_3TaO_4 \rightarrow LiTaO_3 + 0.125 LiO_8 + 1.875 Li$

3.72 - 3.94	$Li_3TaO_4 \rightarrow LiTaO_3 + 0.5 O_2 + 2 Li$
3.94 - 4.03	$Li_3TaO_4 → 0.3333 LiTa_3O_8 + 0.6667 O_2 + 2.667 Li$
4.03 -	$Li_3TaO_4 \rightarrow 0.5 Ta_2O_5 + 0.75 O_2 + 3 Li$

Table S13. Summary of DFT-predicted decomposition reactions related to the voltage stability window of Li_5TaO_5 which is one of the reductive decomposition phases of Li_3TaO_4 .

Voltage / V vs. Li/Li ⁺	Decomposition reaction
0-0.35	$Li_5TaO_5 + 5 Li \rightarrow 5 Li_2O + Ta$
0.35 - 3.10	$Li_5TaO_5 \rightarrow Li_5TaO_5$
3.10 - 3.24	$Li_5TaO_5 \rightarrow 0.5 Li_2O_2 + Li_3TaO_4 + Li$
3.24 - 3.59	$\text{Li}_5\text{TaO}_5 \rightarrow \text{Li}_3\text{TaO}_4 + 0.125 \text{ LiO}_8 + 1.875 \text{ Li}$
3.59 - 3.72	$Li_5TaO_5 \rightarrow LiTaO_3 + 0.25 LiO_8 + 3.75 Li$
3.72 - 3.94	$Li_5TaO_5 \rightarrow LiTaO_3 + O_2 + 4Li$
3.94 - 4.03	$Li_5TaO_5 \rightarrow 0.3333 LiTa_3O_8 + 1.167 O_2 + 4.667 Li$
4.03 -	$Li_5TaO_5 \rightarrow 0.5 Ta_2O_5 + 1.25 O_2 + 5 Li$

Table S14. Summary of DFT-predicted decomposition reactions related to the voltage stability window of La_3TaO_7 which is one of the reductive decomposition phases of Li_3TaO_4 .

Voltage / V vs. Li/Li ⁺	Decomposition reaction
0-0.35	$La_3TaO_7 + 5 Li \rightarrow 2.5 Li_2O + 1.5 La_2O_3 + Ta$
0.35 - 0.55	$La_{3}TaO_{7} + 2.5 Li \rightarrow 0.5 Li_{5}TaO_{5} + 1.5 La_{2}O_{3} + 0.5 Ta$
0.55 - 0.65	La ₃ TaO ₇ + 1.875 Li → 0.625 Li ₃ TaO ₄ + 1.5 La ₂ O3 + 0.375 Ta
0.65 -	$La_3TaO_7 \rightarrow La_3TaO_7$