Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Asymmetric iron-titanium pairs within ultrathin TiO₂ nanosheet enable highefficiency nitrate reduction to ammonia

Supplementary Figures

Fig. S1. Schematic diagram of the synthetic procedure of Fe_1 –TiO₂ nanosheet. Blue, cyan and red balls represent Fe, Ti and O atoms, respectively.

Fig. S2. (a) SEM image of $K_{0.8}Ti_{1.67}Li_{0.23}Fe_{0.1}O_4$ nanosheet. (b) SEM image of $H_{0.8}Ti_{1.67}\Box_{0.23}Fe_{0.1}O_4$ nanosheet.

Fig. S3. The corresponding thickness of the marked sections in Fig. 1c.

Fig. S4. Raman spectra of Fe_1 -TiO₂ and TiO₂ nanosheet.

Fig. S5. Infrared spectrogram of Fe_1 -TiO₂ and TiO₂ nanosheet.

Fig. S6. XPS spectra of Fe_1 -TiO₂ and TiO₂ nanosheet in the O 1s regions.

Fig. S7. The current density collected at -0.85 V vs. RHE for Fe₁ $-TiO_2$ and TiO₂ upon the addition of KSCN.

Fig. S8. The standard adsorption spectra of ammonia (a) and their linear fitting (b).

Fig. S9. (a) The adsorption spectra of ammonia after NRA on Fe_1 -TiO₂ nanosheet at each given potential. (b) The adsorption spectra of ammonia after NRA on TiO₂ nanosheet at each given potential.

Fig. S10. The standard ¹H NMR spectra of ${}^{14}NH_4^+$ at various concentration (a) and their linear fitting (b). (c) The ¹H NMR spectrum of the product obtained by electrocatalysis for 2 hours at -0.85 V vs. RHE.

Fig. S11. NH₃ yields rate and FEs of Fe_1 -TiO₂ and TiO₂ nanosheet at -0.85V.

Fig. S12. NH₃ yields rate and FEs of Fe₁-TiO₂ with varied Fe loading amount. The collected LSV curves (a) and the corresponding FEs and ammonia yield rates (b) for Fe₁-TiO₂ (0.5), Fe₁-TiO₂ (1), Fe₁-TiO₂ and Fe₁-TiO₂ (5).

Fig. S13. The corresponding FEs and ammonia yield rates for Fe_1 -TiO₂ when varying the concentration of nitrate at 0.01, 0.05, 0.1 and 0.5 M.

Fig. S14. CV curves obtained at various scan rates at non-Faradic potential windows for Fe_1 -TiO₂ (a) and TiO₂ (b). The extracted ECSA of Fe_1 -TiO₂ and TiO₂ from Fig. S11a and b.

Fig. S15. (a) The collected LSV curves of Cu_1 -TiO₂ and Ru_1 -TiO₂ at the conditions of with and without nitrate. (b) The corresponding FEs and ammonia yield rates for Cu_1 -TiO₂ at different potentials.

Fig. S16. Atomic arrangement diagram of Fe_1 -TiO₂ (a) and TiO₂ (b) nanosheet upon adsorption of proton.

Fig. S17. (a) The differential charge density for TiO₂ interface. Cyan and yellow isosurfaces (at level of 0.01 e Bohr⁻³) represent electron depletion and accumulation, and light blue, red, and green spheres denote the Ti, O, and nitrate atoms, respectively. (b) Projected DOS (pDOS) profile of TiO₂ nanosheet upon adsorption of nitrate.

Fig. S18. The involved intermediates for nitrate reduction over Fe_1 -TiO₂.

Fig. S19. The involved intermediates for nitrate reduction over TiO_2 .

Fig. S20. The calculated Gibbs free energy of hydrogen evolution over Fe_1 -TiO₂ and TiO₂.

Table S1. Structural parameters of Fe_1 –TiO₂ extracted from the EXAFS fitting. (S₀²=0.8). The C.N. represents coordination number.

Sample	Scattering pair	C.N.	R (Å)	$\sigma^2 \left(10^{\text{-3}} \text{\AA}^2\right)$	$\Delta E_0 (eV)$
Fe ₁ -TiO ₂	Fe–O	5.2 ± 0.5	1.94 ± 0.02	6.0 ± 1.5	-4.9 ± 1.6

 S_0^2 is the amplitude reduction factor $S_0^2=0.8$. C.N., R, σ^2 and ΔE_0 are coordination number, scattering distance, Debye-Waller factor, and edge-energy shift, respectively.

Sample	FE _{NH3}	Yield Rate	Potential vs. RHE	Ref.
Fe ₁ -TiO ₂	97.4%	$\begin{array}{c} 2.2 \text{ mmol } h^{-1} \text{ mg}^{-1} \\ 0.62 \text{ mmol } h^{-1} \text{ cm}^{-2} \end{array}$	-0.85 V	This work
Co/TiO ₂ NSs	97.4%	$0.22 \text{ mmol cm}^{-2} \text{ h}^{-1}$	$-0.72 \mathrm{~V}$	1
FeOOH/CP	92%	901 $\mu g h^{-1} cm^{-2}$	-0.5 V	2
FeCoNiAlTi	95.23%	$0.52 \text{ mg h}^{-1} \text{ cm}^{-2}$	-0.5 V	3
MPS–Cu NDs/CF	94.43%	$0.22 \text{ mmol } h^{-1} \text{ cm}^{-2}$	-1.2 V vs. SCE	4
F–NFs/CF	81.5%	$602.8 \ \mu g \ h^{-1} \ cm^{-2}$	$-0.54~\mathrm{V}$	5
Cu ₂ O–NCs	92.9%	56.2 mg h^{-1} mg _{cat} ⁻¹	-0.85 V	6
10Cu/TiO _{2-x}	81.34%	$0.11 \text{ mmol } \text{h}^{-1} \text{ mg}^{-1}$	-0.75 V	7
a–RuO ₂	97.46%	$0.12 \text{ mmol } \text{h}^{-1} \text{ cm}^{-2}$	-0.35 V	8
CuaO	85 26%	$0.07 \text{ mmol } \text{h}^{-1} \text{ mg}^{-1}$	-1.2 V vs.	9
Cu ₂ O	05.2070		Ag/AgCl	
Zn/Cu-2.3		5.8 mol $g^{-1} h^{-1}$	-0.85 V	10
Co ₃ O ₄ /Co–h	88.7 %	$0.26 \text{ mmol } h^{-1} \text{ cm}^{-2}$	-0.8 V	11
TiO _{2-x}	85.0%	$0.05 \text{ mmol } \text{h}^{-1} \text{ mg}^{-1}$	-1.6 V vs. SCE	12
V-Cu NAE	95.1%	$7.85 \text{ mg h}^{-1} \text{ cm}^{-2}$	-0.3 V	13
Cu nanotubes	85.7%	$778.6 \ \mu g \ h^{-1} \ mg^{-1}$	-1.3 V vs. SCE	14
Fe@Cu1FeOx	95.4%	$1.98 \text{ mg h}^{-1} \text{ cm}^{-2}$	-1.3 V vs. SCE	15
Co-Fe@Fe ₂ O ₃	85.2%	$0.88 \text{ mg h}^{-1} \text{ cm}^{-2}$	-0.75 V	16
Fe SAC	75%	$0.52 \text{ mg h}^{-1} \text{ mg}_{\text{cat.}}^{-1}$	-0.66 V	17
Fe-PPy SACs	~100%	$2.75 \text{ mg h}^{-1} \text{ cm}^{-2}$	$-0.7~\mathrm{V}$	18
Pd–TiO ₂	92.1%	$0.07 \text{ mmol cm}^{-2} \text{ h}^{-1}$	$-0.7 \mathrm{~V}$	19
TiO _{2-x}	78.0%	$0.10 \text{ mmol cm}^{-2} \text{ h}^{-1}$	-1.0 V	20

 Table S2. Comparison of nitrate-reduction performance of Fe1–TiO2 with the reported

 catalysts in the previously literatures.

References

- 1. Y.-T. Xu, Y. Han, D. K. Sam and Y. Cao, *J. Mater. Chem. A*, 2022, **10**, 22390-22398.
- 2. Q. Liu, Q. Liu, L. Xie, Y. Ji, T. Li, B. Zhang, N. Li, B. Tang, Y. Liu and S. Gao, *ACS Appl. Mater. Interfaces*, 2022, **14**, 17312-17318.
- 3. R. Zhang, Y. Zhang, B. Xiao, S. Zhang, Y. Wang, H. Cui, C. Li, Y. Hou, Y. Guo and T. Yang, *Angew Chem Int. Ed.*, 2024, e202407589.
- 4. Z. Yu, J. Xie, T. Ren, H. Yu, K. Deng, Z. Wang, H. Wang, L. Wang and Y. Xu, *Inorg. Chem.*, 2023, **62**, 16228-16235.
- W. Zhang, Y. Yao, Z. Chen, S. Zhao, F. Guo and L. Zhang, *Environ. Sci. Technol.*, 2024, 58, 7208-7216.
- 6. X.-H. Wang, Z.-M. Wang, Q.-L. Hong, Z.-N. Zhang, F. Shi, D.-S. Li, S.-N. Li and Y. Chen, *Inorg. Chem.*, 2022, **61**, 15678-15685.
- 7. X. Zhang, C. Wang, Y. Guo, B. Zhang, Y. Wang and Y. Yu, *J. Mater. Chem. A*, 2022, **10**, 6448-6453.
- 8. Y. Wang, H. Li, W. Zhou, X. Zhang, B. Zhang and Y. Yu, *Angew Chem Int. Ed.*, 2022, **134**, e202202604.
- Z. Gong, W. Zhong, Z. He, Q. Liu, H. Chen, D. Zhou, N. Zhang, X. Kang and Y. Chen, *Appl. Catal. B-Environ.*, 2022, 305, 121021.
- 10. L. Wu, J. Feng, L. Zhang, S. Jia, X. Song, Q. Zhu, X. Kang, X. Xing, X. Sun and B. Han, *Angew Chem Int. Ed.*, 2023, **135**, e202307952.
- 11. F. Zhao, G. Hai, X. Li, Z. Jiang and H. Wang, *Chem. Eng. J.*, 2023, **461**, 141960.
- 12. R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu and B. Zhang, *ACS Catal.*, 2020, **10**, 3533-3540.
- 13. B. Zhang, Z. Dai, Y. Chen, M. Cheng, H. Zhang, P. Feng, B. Ke, Y. Zhang and G. Zhang, *Nat. Commun.*, 2024, **15**, 2816.
- 14. C. Li, S. Liu, Y. Xu, T. Ren, Y. Guo, Z. Wang, X. Li, L. Wang and H. Wang, *Nanoscale*, 2022, **14**, 12332-12338.
- 15. B. Zhou, L. Yu, W. Zhang, X. Liu, H. Zhang, J. Cheng, Z. Chen, H. Zhang, M. Li and Y. Shi, *Angew Chem Int. Ed.*, 2024, e202406046.
- 16. S. Zhang, M. Li, J. Li, Q. Song and X. Liu, *P. Natl. Acad. Sci.*, 2022, **119**, e2115504119.
- Z.-Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F.-Y. Chen, J. Y. Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong, Q. Li, I. Gates, S. Siahrostami and H. Wang, *Nat. Commun.*, 2021, **12**, 2870.
- 18. P. Li, Z. Jin, Z. Fang and G. Yu, *Energy Environ. Sci.*, 2021, 14, 3522-3531.
- 19. Y. Guo, R. Zhang, S. Zhang, Y. Zhao, Q. Yang, Z. Huang, B. Dong and C. Zhi, *Energy Environ. Sci.*, 2021, **14**, 3938-3944.
- 20. Z. Wei, X. Niu, H. Yin, S. Yu and J. Li, *Appl. Catal. A-Gen.*, 2022, **636**, 118596.