Supporting Information

Photocatalytic Conversion of 5-Hydroxymethylfurfural using Mixed Halide

Perovskite MAPbBr_xCl_{3-x} Quantum Dots

Jaemin Han^a, Hangil Lee^{b*}, and Hyun Sung Kim^{a*}

^aBB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea

^bDepartment of Chemistry Sookmyung Women's University, Seoul 04310, Republic of Korea

Table of Contents

Figure S1. Enlarged XRD pattern corresponding to (001) plane of perovskite QDs samples
Figure S2. Method of band gap energy (Eg) determination from the Tauc plot for perovskite QDs samples4
Figure S3. FE-SEM images of (a, b) MAPbBr ₂ Cl ₁ bulk size materials and (c, d) MAPbBr ₂ Cl ₁ QDs5
Figure S4. XRD patterns, optical band gap energy and band edge position of MAPbBr ₂ Cl ₁ bulk size materials
and MAPbBr ₂ Cl ₁ QDs
Figure S5. XRD patterns, TEM images and XPS spectra of MAPbBr ₂ Cl ₁ QD (after photocatalytic reaction)7
Figure S6. Recycle tests result of MAPbBr ₂ Cl ₁ QDs capped with octanoic acid and octylamine7
Figure S7. Various atmosphere condition for photocatalytic reaction using MAPbBr ₂ Cl ₁ QDs8
Figure S8. Photoluminescence (PL) spectra of MAPbBr ₃ QD, MAPbBr ₂ Cl ₁ QD and MAPbCl ₃ QD in the presence
of O ₂ 9
Figure S9. Absorption spectra of in the presence of KI for indicating H ₂ O ₂ generation as photocatalytic reaction
progress using MAPbBr ₂ Cl ₁ QDs, bulk MAPbBr ₂ Cl ₁ and absence of photocatalyst10
Figure S10. Comparison with CdS QDs, decorated CdS and Zinc Indium sulfide nanoparticles11
Table S1. The surface to inner concentration ratio of Br ⁻ and Cl ⁻ ions in the MAPbBr _x Cl _{3-x} QDs12
Table S2. Comparison of photocatalytic efficiency with other literatures. 13
References

Figure S1. Enlarged XRD pattern corresponding to (001) plane of perovskite QDs samples.

Figure S2. Method of band gap energy (Eg) determination from the Tauc plot for perovskite QDs samples.

Figure S3. FE-SEM images of (a, b) MAPbBr₂Cl₁ bulk size materials and (c, d) MAPbBr₂Cl₁ QDs.

Figure S4. (a) XRD pattern, (b) optical band gap energy and (c) band edge position of MAPbBr₂Cl₁ bulk size materials and MAPbBr₂Cl₁ QDs.

Figure S5. (a) XRD patterns, (b) TEM images and (c) XPS spectra of initial and recycled MAPbBr₂Cl₁ QDs as indicated.

Figure S6. Recycle tests result of MAPbBr₂Cl₁ QDs capped with octanoic acid and octylamine. Reaction conditions: 5-hydroxymethylfurfural (HMF) (12.5 μ mol), catalyst (4.5 mg), Ethyl acetate (2.5 mL), and 7.1 W blue light-emitting diodes.

Figure S7. Various atmosphere condition for photocatalytic reaction using MAPbBr₂Cl₁ QDs.

Figure S8. Photoluminescence (PL) quenching of (a) $MAPbBr_3 QD$ (a) $MAPbBr_2Cl_1 QD$ (b) $MAPbCl_3 QD$ with and without O_2 .

Figure S9. Absorption spectra of in the presence of KI for indicating H_2O_2 generation as photocatalytic reaction progress using MAPbBr₂Cl₁ QDs, bulk MAPbBr₂Cl₁ and absence of photocatalyst.

Figure S10. Comparison with CdS QDs, decorated CdS and Zinc Indium sulfide nanoparticles

	Br	3d	Cl 2p		
MAPb(Br _x Cl _{1-x}) ₃	Inner	Surface	Inner	Surface	
-Br ₃	1	0.21116	-	-	
-Br _{2.5} Cl _{0.5}	1	0.21109	1	0.41969	
-Br ₂ Cl ₁	1	0.21010	1	0.41977	
-Br _{1.5} Cl _{1.5}	1	0.20991	1	0.41989	
-Br ₁ Cl ₂	1	0.20988	1	0.42001	
-Cl ₃	-	-	1	0.42118	

Table S1. The surface to inner concentration ratio of Br⁻ and Cl⁻ ions in the MAPbBr_xCl_{3-x} QDs.

Catal.	Light Source	Conversed HMF (µmole)	RXN Time (hr)	Catal. (mg)	Efficiency (µmole/mg∙h)	Ref.
UCNT	300 W Xe lamp (>420 nm)	50.000	5	100	0.1000	S1
g-C ₃ N ₄	300 W Xe lamp (>360 nm)	85.600	6	50	0.2853	S2
SGCN	Solar simulator (>400 nm, 100 mW/cm ²)	13.800	6	10	0.2300	S3
Zn _{0.5} Cd _{0.5} S @1wt% MnO ₂	30 W WLED (>400 nm)	7.391	24	20	0.0154	S4
TBA-W ₁₀	Xe lamp (400 mW/cm ²)	4.910	2	2.5	0.9820	S5
MCN-540 (g-C ₃ N ₄)	Natural solar light	37.125	4	25	0.3713	S6
TEO PCN-H ₂ O ₂	Natural solar light	13.875	4	50	0.0694	S 7
Nb ₂ O ₅	300 W Xe lamp	0.096	6	50	0.0003	S 8
4.7%WO ₃ /gC ₃ N ₄	300 W Xe lamp	0.242	6	50	0.0008	S9
CTF-Th/SBA15	460 nm Blue LED (65 mW/cm ²)	57.000	30	10	0.1900	S10
SGH-TiO ₂	Visible	11.8	4	20	0.1475	S11
MIL-53(Fe) (CM-10)	>360 nm Blue LED	76.5	6	50	0.2550	S12
CN-WO ₃ @MnO ₂	420 nm LED (10 W)	11.64	24	15	0.0323	S13
12% Bi ₂ WO ₆ / mpg-C ₃ N ₄	300 W Xe lamp (>400 nm)	0.297	8	50	0.0007	S14
TMADT	35 W Visible light (W/Bromine)	91.8	12	5.3	1.4434	S15
ZnIn ₂ S ₄ 2D	Blue LED (λmax=467 nm)	38	2	10	1.9000	S16
MAPbBr ₂ Cl ₁ QD	445 nm Blue LED	12.500	1.5	4.5	1.8519	This study

Table S2. Comparison of photocatalytic efficiency with other literatures.

References

S1. X. Bao, M. Liu, Z. Wang, D. Dai, P. Wang, H. Cheng, Y. Liu, Z. Zheng, Y. Dai and B. Huang, *ACS Catal.*, 2022, **12**, 1919-1929.

S2. Q. Wu, Y. He, H. Zhang, Z. Feng, Y. Wu and T. Wu, Mol. Catal., 2017, 436, 10-18.

S3. V. R. Battula, A. Jaryal and K. Kailasam, J. Mater. Chem. A, 2019, 7, 5643-5649.

S4. S. Dhingra, T. Chhabra, V. Krishnan and C. M. Nagaraja, ACS Appl. Energy Mater., 2020, 3, 7138-7148.

S5. Z. Li, M. Zhang, X. Xin and H. Lv, ChemCatChem, 2021, 13, 1389-1395.

S6. I. Krivtsov, E. I. García-López, G. Marcì, L. Palmisano, Z. Amghouz, J. R. García, S. Ordóñez and E. Díaz, *Appl. Catal. B: Environ.*, 2017, **204**, 430-439.

S7. M. Ilkaeva, I. Krivtsov, E. I. García-López, G. Marcì, O. Khainakova, J. R. García, L. Palmisano, E. Díaz and S. Ordóñez, *J. Catal.*, 2018, **359**, 212-222.

S8. H. Zhang, Q. Wu, C. Guo, Y. Wu and T. Wu, ACS Sustain. Chem. Eng., 2017, 5, 3517-3523.

S9. H. Zhang, Z. Feng, Y. Zhu, Y. Wu and T. Wu, J. Photochem. Photobiol. A, 2019, 371, 1-9.

S10. C. Ayed, W. Huang, G. Kizilsavas, K. Landfester and K. A. I. Zhang, ChemPhotoChem, 2020, 4, 571-576.

S11. A. Khan, M. Goepel, A. Kubas, D. Lomot, W. Lisowski, D. Lisovytskiy, A. Nowicka, J. C. Colmenares and R. Glaser, *ChemSusChem*, 2021, 14, 1351-1362.

S12. D. Huang, H. Wang and Y. Wu, Molecules, 2022, 27, 8537.

S13. H. Qian, Q. Hou, W. Zhang, Y. Nie, R. Lai, H. Ren, G. Yu, X. Bai, H. Wang and M. Ju, *Appl. Catal. B: Environ.*, 2022, **319**, 121907.

S14. L. Cheng, D. Huang, Y. Zhang and Y. Wu, Appl. Organomet. Chem., 2021, 35, e6404.

S15. B. Yang, W. Hu, F. Wan, C. Zhang, Z. Fu, A. Su, M. Chen and Y. Liu, Chem. Eng. J., 2020, 396, 125345.

S16. S. Ding, J. B. Gabriel Filho, T. Peppel, S. Haida, J. Rabeah, N. Steinfeldt and J. Strunk, *Sustain. Energy Fuels*, 2023, 7, 4396-4400.