Supporting Information

Axial Coordination-Assisted Interwoven Isomerism in 3D Hydrogen-Bonded Organic Frameworks for Efficient Natural Gas Purification

Hyunjun Park^{1‡}, Kwang Hyun Oh^{2‡}, Jae Hwa Lee^{3‡}, Younghun Kim¹, Jeong Heon Lee¹, Hoi Ri Moon⁴*, Youn-Sang Bae²*, and Woo-Dong Jang¹*

¹Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

²Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

³Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea

⁴Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea

Figure S1. PXRD pattern of a) YSH- 8_{Zn} and b) YSH- 8_{Ni} .

Figure S2. Pore size distribution of a) YSH- $8_{Zn/Hx}^{*}$, b) YSH- 8_{Ni}^{*} .

Figure S3. TGA curve of a) YSH-8_{Ni} and b) YSH-8_{Zn}.

 $\textbf{Figure S4. Single gas absorption isotherm of C_3H_8, C_2H_6 and CH_4 at 273 K of a) $\textbf{YSH-8}_{Zn/Hx}^*$ and $b)$ $\textbf{YSH-8}_{Ni}^*$.}$

Figure S5. Adsorption site of C_3H_8 and C_2H_6 in YSH-8_{Zn/Hx}.

Figure S6. In-situ DRIFT spectra of **YSH-8**_{Zn/Hx}* a) C_3H_8 adsorption, b) C_3H_8 desorption; c) C_2H_6 adsorption and d) C_2H_6 desorption.

Figure S7. PXRD pattern of $YSH-8_{Zn}^*$ after breakthrough experiment.

Figure S8. PXRD pattern of YSH- $8_{Zn/Hx}$ * after exposure in air.

Figure S9. SEM images of **YSH-8**_{Zn/Hx}* a) and b) pristine; c) and d) after C_3H_8 adsorption; e) and f) after C_2H_6 adsorption; g) and h) after CH_4 adsorption.

Figure S10. Comparison of 77K N_2 Isotherm of YSH-8_{Zn/Hx}* after C_3H_8 , C_2H_6 , and CH_4 adsorption.

Motorial	BET surface	Gas uptake at 298 K (mmol/g)		IAST (298 K/ gas ratio 50:50)			Pof	
Material	area (m²/g)	C_3H_8	C_2H_6	CH₄	$C_{3}H_{8}/C_{2}H_{6}$	C ₃ H ₈ /CH ₄	C ₂ H ₆ /CH ₄	Rei.
YSH-8 _{Zn/Hx} *	1665	6.46	2.06	0.239	36.9	492	22.2	This work
MOF 1	1125	3.56	4.55	0.68	10.9	638.9	61.0	1
ZUL-C2	417	2.52	2.82	-	-	632	91	2
UPC-99	886	4.85	2.72	0.44	4.9	426.8	-	3
BSF-1	535	1.94	1.57	0.47	-	353	23	4
UPC-100- IN	1677.7	5.30	3.15	0.52	-	186.4	-	5
JLU-Liu45	971	3.79	3.78	0.69		42.7	20.1	6
UiO-67	2591	8.2	3.0	0.5	-	73.7	8.1	7
PFC-5	256	-	1.15(5)	0.356(9)	-	-	84	8
HOF-BTB	955	-	3.09	0.39	-	-	13.7	9
HOF-14	2573	8.09(3)	1.97(1)	0.34(7)	-	28.6	6.3	10
ZJU-HOF- 8a	863	3.05	2.5	0.50		123ª	18ª	11
HOF-TCBP	2066	-	-	0.328	-	-	-	12
HOF-ZJU- 201a	423	2.61	3.16	1.73	-	119	45	13
HOF-ZJU- 202a	366	1.85	2.53	1.50	-	40	36	13
HOF-16	302	-	-	0.339	-	-	-	14

 Table S1. Comparison with benchmark adsorbents.

a) 0.05/0.95

 Table S2. IAST fitting parameter.

	q _{m,1}	b ₁	n ₁	q _{m,2}	b ₂	n ₂	R ²
CH ₄	6.5E–2	1.10	5.91	0.39	1.03	1.21	0.999
C_2H_6	4.85	5.1E–3	1.53	1.25	1.82E-2	0.85	0.999
$C_{3}H_{8}$	3.63	0.15	0.78	3.10	0.24	3.20	0.999

Single crystal information

Table S3. X-ra	y crystallographic	data for YSH-8 _{Ni} .
----------------	--------------------	--------------------------------

Compound	YSH-8 _{Ni}
Formula	$C_{39}H_{21}N_3Ni_{0.75}O_{12}$
Formula weight	767.62
Temperature, K	298
λ, Å	tetragonal
Crystal system	P4/nnc
Space group	24.1698(19)
<i>a,</i> Å	24.1698(19)
<i>b,</i> Å	25.181(4)
<i>c</i> , Å	90
α, °	90
β, °	90
γ, °	90
<i>V</i> , Å ³	14710(3)
Ζ	8
$ ho_{calcd}$, g cm ⁻³	0.693
μ, mm ⁻¹	0.612
<i>F</i> (000)	3144.0
heta range for data collection, °	5.068 to 136.662
Index ranges	-28 ≤ h ≤ 20, -23 ≤ k ≤ 28, -26 ≤ l ≤ 30
Reflections collected	20460
Independent reflections	$6179 [R_{int} = 0.1491, R_{sigma} = 0.1274]$
Completeness	99.9
Refinement method	Full-matrix least-squares on <i>F</i> ²
Data/restraints/parameters	6179/6/255
Goodness-of-fit on <i>F</i> ²	1.071
R ₁ , wR ₂ [<i>I</i> >2σ(<i>I</i>)]	0.1581, 0.3622 ^b
R_1 , wR_2 (all data)	0.1970, 0.3923 ^b
Largest peak & hole, eÅ-3	2.34 and -0.51
CCDC number	2324254

^{*a*} $R = \Sigma ||Fo| - |Fc|| / \Sigma \overline{|Fo|}; wR(F^2) = [\Sigma w(Fo^2 - Fc^2)^2 / \Sigma w(Fo^2)^2] / 2$ where $w = 1 / [\sigma^2(Fo^2) + (0.1000P)^2], P = (Fo^2 + 2Fc^2) / 3.$

^b $R = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|; wR(F^2) = [\Sigma w(Fo^2 - Fc^2)^2 / \Sigma w(Fo^2)^2]^{1/2}$ where $w = 1/[\sigma^2(Fo^2) + (0.2000P)^2], P = (Fo^2 + 2Fc^2)/3.$

D-H…A	<i>d</i> (H…A) [Å]	<i>d</i> (D…A) [Å]	∠(DHA)
O(11)-H(11)…O(31)	1.81	2.621(8)	169.7
O(11)-H(11)⋯O(12)	1.81	2.614(8)	167.7

Table S4. Hydrogen bonds for YSH-8_{Ni}.

 Table S5. X-ray crystallographic data for YSH-8_{Zn}.

Compound	YSH-8 _{zn}
Formula	$Zn_2C_{104}H_{56}N_8O_{34}$
Formula weight	2092.34
Temperature, K	173(2)
λ, Å	0.71073
Crystal system	Tetragonal
Space group	P ⁴ 2c
<i>a,</i> Å	23.881(5)
<i>b,</i> Å	23.881(5)
<i>c</i> , Å	16.664(5)
<i>α</i> , °	90
β, °	90
γ, °	90
V, Å ³	9503(5)
Ζ	2
$ ho_{calcd}, { m g} { m cm}^{-3}$	0.733
μ, mm ⁻¹	0.299
<i>F</i> (000)	2144
θ range for data collection, °	2.961 to 24.296
Index ranges	<i>–</i> 27≤ <i>h</i> ≤27, <i>–</i> 27≤ <i>k</i> ≤27, <i>–</i> 18≤ <i>l</i> ≤19
Reflections collected	50510
Independent reflections	7724 [<i>R</i> (int) = 0.1267]
Completeness	99.5 (to theta = 24.296°)
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	7724 / 369 / 297
Goodness-of-fit on F ²	1.680
R ₁ , wR ₂ [<i>I</i> >2σ(<i>I</i>)]	0.1076, 0.2742 ^b
R_1 , wR_2 (all data)	0.1537, 0.2975 ^b
Largest peak & hole, eÅ-₃	0.761 and -0.664
CCDC number	2159884

^{*a*} $R = \Sigma ||Fo| - |Fc|| / \Sigma ||Fo|; wR(F^2) = [\Sigma w(Fo^2 - Fc^2)^2 / \Sigma w(Fo^2)^2]^{1/2}$ where $w = 1 / [\sigma^2 (Fo^2) + (0.1000P)^2], P = (Fo^2 + 2Fc^2)/3.$

^b $R = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|; wR(F^2) = [\Sigma w(Fo^2 - Fc^2)^2 / \Sigma w(Fo^2)^2]^{1/2}$ where $w = 1/[\sigma^2(Fo^2) + (0.2000P)^2], P = (Fo^2 + 2Fc^2)/3.$

D-H…A	<i>d</i> (H…A) [Å]	<i>d</i> (D⋯A) [Å]	∠(DHA)
O(15)-H(15)····O(18) ^{#1}	1.77	2.551(11)	153.2
O(19)-H(19)····O(16) ^{#2}	1.79	2.577(10)	156.3
O(34)-H(34)····O(37) ^{#3}	1.76	2.588(15)	166.3
O(36)-H(36)····O(33) ^{#4}	1.84	2.650(14)	162.4

Table S6. Hydrogen bonds for YSH-8_{Zn}.

Symmetry transformations used to generate equivalent atoms:

#¹11 1-Y, 1-X, -1/2+Z; #²12 1-Y, 1-X, 1/2+Z; #3 +Y, +X, -1/2+Z; #4+Y, +X, 1/2+Z

Table S7. X-ray crystallographic data for YSH-8_{Zn/Hx}.

Compound	YSH-8 _{Zn/Hx}
Formula	$Zn_2C_{104}H_{56}N_8O_{33}$
Formula weight	2076.30
Temperature, K	173(2)
λ, Å	0.70000
Crystal system	Tetragonal
Space group	P4/nnc
<i>a,</i> Å	23.745(5)
<i>b,</i> Å	23.745(5)
<i>c</i> , Å	16.703(3)
α, °	90
β, °	90
γ, °	90
<i>V</i> , Å ³	9418(4)
Ζ	2
$ ho_{calcd},~{ m g~cm^{-3}}$	0.732
μ, mm ⁻¹	0.289
<i>F</i> (000)	2120
heta range for data collection, °	1.194 to 32.652
Index ranges	<i>–</i> 28≤ <i>h</i> ≤30, <i>–</i> 29≤ <i>k</i> ≤26, <i>–</i> 22≤ <i>l</i> ≤22
Reflections collected	47460
Independent reflections	4608 [<i>R</i> (int) = 0.0884]
Completeness	99.3% (to theta = 24.835°)
Refinement method	Full-matrix least-squares on <i>F</i> ²
Data/restraints/parameters	4608 / 0 / 170
Goodness-of-fit on <i>F</i> ²	0.983
<i>R</i> ₁ , <i>wR</i> ₂ [<i>I</i> >2σ(<i>I</i>)]	0.0583, 0.1962ª
R_1 , wR_2 (all data)	0.0916, 0.2090ª
Largest peak & hole, eÅ-3	1.338 and –0.372
CCDC number	2159880

^{*a*} $R = \Sigma ||Fo| - |Fc|| / \overline{\Sigma |Fo|}; wR(F^2) = [\Sigma w(Fo^2 - Fc^2)^2 / \Sigma w(Fo^2)^2]^{1/2}$ where $w = 1 / [\sigma^2 (Fo^2) + (0.1287P)^2], P = (Fo^2 + 2Fc^2)/3.$

D–H…A	<i>d</i> (H…A) [Å]	<i>d</i> (D…A) [Å]	∠(DHA)
O(2) –H(2)····O(3) ^{#1}	1.85	2.589(3)	145.5
O(4) −H(4)…O(1) ^{#2}	1.86	2.621(3)	150.2

Table S8. Hydrogen bonds for YSH-8_{Zn/Hx}.

Symmetry transformations used to generate equivalent atoms:

References

1. Zhang, X.-X.; Guo, X.-Z.; Chen, S.-S.; Kang, H.-W.; Zhao, Y.; Gao, J.-X.; Xiong, G.-Z.; Hou, L., A stable microporous framework with multiple accessible adsorption sites for high capacity adsorption and efficient separation of light hydrocarbons. *Chem. Eng. J.* **2023**, *466*, 143170.

2. Zhou, J.; Ke, T.; Steinke, F.; Stock, N.; Zhang, Z.; Bao, Z.; He, X.; Ren, Q.; Yang, Q., Tunable Confined Aliphatic Pore Environment in Robust Metal–Organic Frameworks for Efficient Separation of Gases with a Similar Structure. *J. Am. Chem. Soc.* **2022**, *144* (31), 14322-14329.

3. Wang, X.; Zhang, X.; Zhang, K.; Wang, X.; Wang, Y.; Fan, W.; Dai, F., Aminofunctionalized Cu-MOF for efficient purification of methane from light hydrocarbons and excellent catalytic performance. *Inorganic Chemistry Frontiers* **2019**, *6* (5), 1152-1157.

4. Zhang, Y.; Yang, L.; Wang, L.; Duttwyler, S.; Xing, H., A Microporous Metal-Organic Framework Supramolecularly Assembled from a CuII Dodecaborate Cluster Complex for Selective Gas Separation. *Angew. Chem. Int. Ed.* **2019**, *58* (24), 8145-8150.

5. Fan, W.; Wang, X.; Xu, B.; Wang, Y.; Liu, D.; Zhang, M.; Shang, Y.; Dai, F.; Zhang, L.; Sun, D., Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance. *J. Mater. Chem. A* **2018**, *6* (47), 24486-24495.

6. Gu, J.; Sun, X.; Kan, L.; Qiao, J.; Li, G.; Liu, Y., Structural Regulation and Light Hydrocarbon Adsorption/Separation of Three Zirconium–Organic Frameworks Based on Different V-Shaped Ligands. *ACS Appl. Mater. Interfaces* **2021**, *13* (35), 41680-41687.

7. Lin, R.-G.; Li, L.; Lin, R.-B.; Arman, H.; Chen, B., Separation of C2/C1 hydrocarbons through a gate-opening effect in a microporous metal–organic framework. *CrystEngComm* **2017**, *19* (45), 6896-6901.

8. Yin, Q.; Lü, J.; Li, H.-F.; Liu, T.-F.; Cao, R., Robust Microporous Porphyrin-Based Hydrogen-Bonded Organic Framework for Highly Selective Separation of C2 Hydrocarbons versus Methane. *Crystal Growth & Design* **2019**, *19* (7), 4157-4161.

9. Yoon, T.-U.; Baek, S. B.; Kim, D.; Kim, E.-J.; Lee, W.-G.; Singh, B. K.; Lah, M. S.; Bae, Y.-S.; Kim, K. S., Efficient separation of C2 hydrocarbons in a permanently porous hydrogen-bonded organic framework. *Chem. Commun.* **2018**, *54* (67), 9360-9363.

Wang, B.; Lv, X.-L.; Lv, J.; Ma, L.; Lin, R.-B.; Cui, H.; Zhang, J.; Zhang, Z.; Xiang,
 S.; Chen, B., A novel mesoporous hydrogen-bonded organic framework with high porosity and stability. *Chem. Commun.* 2020, 56 (1), 66-69.

11. Jiang, C.; Wang, J.-X.; Liu, D.; Wu, E.; Gu, X.-W.; Zhang, X.; Li, B.; Chen, B.; Qian, G., Supramolecular Entanglement in a Hydrogen-Bonded Organic Framework Enables Flexible-Robust Porosity for Highly Efficient Purification of Natural Gas. *Angew. Chem. Int. Ed.* **2024**, *63* (26), e202404734.

 Hu, F.; Liu, C.; Wu, M.; Pang, J.; Jiang, F.; Yuan, D.; Hong, M., An Ultrastable and Easily Regenerated Hydrogen-Bonded Organic Molecular Framework with Permanent Porosity. *Angew. Chem. Int. Ed.* 2017, *56* (8), 2101-2104.

13. Liu, Y.; Xu, Q.; Chen, L.; Song, C.; Yang, Q.; Zhang, Z.; Lu, D.; Yang, Y.; Ren, Q.; Bao, Z., Hydrogen-bonded metal-nucleobase frameworks for highly selective capture of ethane/propane from methane and methane/nitrogen separation. *Nano Research* **2022**, *15* (8), 7695-7702.

14. Cai, Y.; Chen, H.; Liu, P.; Chen, J.; Xu, H.; Alshahrani, T.; Li, L.; Chen, B.; Gao, J., Robust microporous hydrogen–bonded organic framework for highly selective purification of methane from natural gas. *Microporous Mesoporous Mater.* **2023**, *352*, 112495.