Supporting Information

Hierarchical Core-shell Heterostructure FeMoS@CoFe LDH for

Multifunctional Green Applications Boosting Large Current Density

Water Splitting

Chun Han^a, Yunhe Zhao^{a*}, Gong Chen^a, Haiyan Song^a, Xiaoliang Wu^a, Zehua Guo^b, Chunxia Chen^{a*}

- a. College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P.R. China.
- b. Heilongjiang Provincial Key Laboratory of Nuclear Power System & Equipment, Harbin Engineering University, Harbin 150001, P.R. China.

E-mail addresses: zhaoyunhe@nefu.edu.cn (Y. Zhao), ccx1759@163.com (C. Chen).

1. Experimental section

1.1 Chemicals and materials

Ferric nitrate nonahydrate (Fe(NO₃)₃·9H₂O, 99%), cobaltous nitrate hexahydrate (Co(NO₃)₂·6H₂O, 99%), ammonium molybdate ((NH₄)₆Mo₇O₂₄·4H₂O, 99%), ferrous sulfate (FeSO₄·7H₂O, 99%), thioacetamide (TAA, 99%), and potassium hydroxide (KOH, 85%) were all of analytical grade and used without further purification. The deionized water was used throughout the experiments.

1.2 Synthesis of FeMoS

First, the nickel foam (NF) (about $2 \times 3 \text{ cm}^2$) was cleaned using 1 M HCl aqueous solution, ethanol, and deionized water for 15 minutes respectively. Then, 0.04 M Fe(NO₃)₃·9H₂O, 0.04 M (NH₄)₂MoO₄, and 0.03 M TAA were dissolved in 35 mL deionized water and stirred for 10 min under room temperature. Then the solution was transferred to a 50 ml Teflon-lined steel autoclave with NF and heated at 180 °C for 12 h. The FeMoS precursor was obtained through washing with deionized water and then dried at 60 °C overnight.

1.3 Synthesis of FeMoS@CoFe LDH

The FeMoS@CoFe LDH was prepared via the electrodeposition using a threeelectrode configuration with FeMoS, saturated calomel electrode (SCE) and Pt sheet as working electrode, reference electrode and counter electrode, respectively. It was carried out in a mixed solution of 0.015 M Co(NO₃)₂·6H₂O and 0.015 M FeSO₄·7H₂O by maintaining the potential of -1.0 V (*vs.* SCE) for 100 s, 200 s and 300 s, respectively.

1.4 Synthesis of CoFe LDH

The CoFe LDH nanosheet was direct electrodeposited on NF as working electrode using the same procedure as FeMoS@CoFe LDH.

1.5 Characterizations

The X-ray diffraction (XRD) patterns of the catalysts were recorded on a TD-3500. Scanning electron microscopy (SEM, JSM-7500F) was used to observe the morphologies and structures of the products. Transmission electron microscope (TEM) and corresponding elemental mappings were performed on a JSM-2100 with X-ray energy-dispersive spectroscopy (EDS). The samples were characterized at atomic scale on aberration-corrected high angle annular darkfield scanning transmission electron microscope (AC-HAADF-STEM) of JEM ARM 200F. X-ray photoelectron spectroscopy (XPS) was collected by ESCALAB 250Xi.

1.6 Capillary-fed electrolysis cell connected drainage device

In this device, the polyether sulfone (PES) separator between the electrodes continuously supplies electrolyte to the electrodes through spontaneous capillary action. The electrodes are held against opposite sides of the separator, above the horizontal line of the electrolyte. The bottom end of the separator is dipped in a reservoir, resulting in capillary-induced movement of electrolyte. These electrodes draw liquid from the separator forming a thin electrolyte coating. Applying an appropriate voltage between the electrodes can trigger the electrolysis of water. Due to the ability of the generated H_2 and O_2 to easily penetrate the thin electrolyte layer covering their respective electrodes, the design of the capillary-fed electrolysis cell-drainage device achieves bubble free electrolysis. Gas can be collected directly through exhaust channels and drainage devices.

1.7 Electrochemical analysis

The electrocatalytic performance of the three-electrode system was evaluated on the CHI 660D electrochemical analyzer. The Hg/HgO electrode was used as reference electrode, Pt sheet as the counter electrode in OER, graphite rod as the counter electrode in HER, and as-synthesized samples as the working electrode. The following formula is used for calibrating potential based on reversible hydrogen electrode scale:

$$E_{RHE} = E_{Hg/HgO} + 0.198 V + 0.059$$

The electrochemical double layer capacitance (C_{dl}) was determined with typical cyclic voltammetry (CV) measurements at various scan rates between 10~50 mV s⁻¹. The calculation formula for C_{dl} is $C_{dl} = (j_a - j_c)/(2 \times v)$, where j_a and j_c are the current densities of the positive and negative electrodes, respectively.

Electrochemically active surface area (ECSA). The ECSA was measured by the C_{dl} method, which was calculated through the following equation:

$$ECSA = \frac{C_{dl}}{C_s} \times S$$

where $C_s = 40$ mF cm⁻², where *s* represents the physical surface area of the electrode (~ 0.25 cm²).

Turnover frequency (TOF). TOF was calculated via the following formula according to previous reports.^[1,2]

$$TOF \ per \ site = \frac{\# \ Total \ Hydrogen \ Turn \ Overs/cm^2 \ geometric \ area}{\# \ Surface \ Sites/cm^2 \ geometric \ area}$$

The total number of hydrogen turnovers was calculated from the current density using the following equation:

$$\#_{H_2} = \left(j\frac{mA}{cm^2}\right) \left(\frac{1C\ s^{-1}}{1000\ mA}\right) \left(\frac{1\ mol\ e^{-}}{96485\ C}\right) \left(\frac{1\ mol\ H_2}{2\ mol\ e^{-}}\right) \left(\frac{6.022 \times 10^{23}H_2\ molecules}{1\ mol\ H_2}\right)$$
$$= 3.12 \times 10^{15} \frac{H_2/s}{cm^2} per \frac{mA}{cm^2}$$

The total number of effective surface sites was calculated based on the following equation:

$$\frac{\# Surface \ sites}{cm^2 \ geometric \ area} = \frac{\# \ Surface \ sites \ (flat \ standard)}{cm^2 \ geometric \ area} \times Roughness \ factor$$

Here, the roughness factor (RF) was calculated according to the following equation:

$$RF = \frac{C_{dl}(Sample)}{C_{dl}(flat \ standard)}$$

Faraday efficiency (*FE*). The Faraday efficiency of HER/OER was measured using the drainage method. The calculation formula for *FE* is as follows:

$$FE(\%) = \frac{n_{exp}}{n_{theor}} \times 100$$

where n_{exp} and n_{theor} are experimental and theoretical amounts of O₂ or H₂: produced during the OER or HER process, *z* is the electron transfer number of OER or HER.

According to the Faraday's law, the n_{theor} (O₂) was calculated by the equation:

$$n_{theor} = \frac{I \cdot t}{z \cdot F} (mol)$$

It was determined by a water displacement method and calculated by the ideal gas law:

$$n_{exp} = \frac{p \cdot V}{R \cdot T} (mol)$$

To sum up, the calculation formula for *FE* is as follows:

$$FE(\%) = \frac{n_{exp}}{n_{theor}} \times 100 = \frac{zFV}{ItV_m}$$

where z = 2 is the electron transfer number of HER and z = 4 is the electron transfer number of OER, *F* is the Faraday constant (96485 C mol⁻¹), *V* is the volume of O₂/H₂ produced, *I* is the current (A), *t* is the time (s) and *V_m* is the molar volume of (24.5 L mol⁻¹ at 20 °C).

Fig. S1. SEM images of (a) FeMoS. (b) FeMoS@CoFe LDH-100. (c) FeMoS@CoFe LDH-300.

Fig. S2. (a,b) TEM images and (c) Corresponding elemental mapping images of FeMoS.

Fig. S3. STEM-EDS spectra of FeMoS@CoFe LDH.

Fig. S4. (a) XPS survey spectrum of FeMoS@CoFe LDH. (b) The high-resolution spectra of O 1*s*.

Fig. S5. (a) XPS survey spectrum of FeMoS. (b) The high-resolution spectra of O 1s.

Fig. S6. (a) XPS survey spectrum of CoFe LDH. The high-resolution spectra of (b) Fe 2*p*. (c) O 1*s*.

Fig. S7. OER performances of (a) LSV curves. (b) Nyquist plots and equivalent circuits of FeMoS@CoFe LDH-100, FeMoS@CoFe LDH -200 and FeMoS@CoFe LDH-300.

Fig. S8. Forward and backward voltammogram in OER.

Fig. S9. CV curves of (a) FeMoS. (b) CoFe LDH and (c) FeMoS@CoFe LDH at various scan rates (20, 40, 60, 80 and 100 mV s⁻¹) in the non-Faradic region (0.923 - 1.023 V *vs*. RHE) during OER process.

Fig. S10. Double Y-axis bar chart of ECSA and C_{dl} during OER process.

Fig. S11. HER performances of (a) LSV curves. (b) Nyquist plots and equivalent circuits of FeMoS@CoFe LDH-100, FeMoS@CoFe LDH -200 and FeMoS@CoFe LDH-300.

Fig. S12. TOF values at the overpotential of 300 mV in HER.

Fig. S13. CV curves of (a) FeMoS. (b) CoFe LDH and (c) FeMoS@CoFe LDH at various scan rates (20, 40, 60, 80 and 100 mV s⁻¹) in the non-Faradic region (-0.006-0.094 V *vs*. RHE) during HER process.

Fig. S14. Double Y-axis bar chart of ECSA and C_{dl} during HER process.

Fig. S15. Optical photos of (a) Capillary-fed electrolysis cell. (b) Cathode and anode.

Catalysts	Current density (mA cm ⁻²)	Overpotential (mV)	Tafel (mV dec ⁻¹)	Ref.
Co ₉ S ₈ @Fe ₃ O ₄	500	350	54	[3]
IrNi-FeNi ₃ /NF	500	300	36.01	[4]
(Ni-MoO ₂)@C/NF	1000	365	62	[5]
NiCo@C- NiCoMoO/NF	1000	390	75.15	[6]
Ni/MoO2@CN	1000	420	48	[7]
Sn-Ni(OH) ₂	1000	460	62	[8]
Ni ₂ P-Fe ₂ P/NF	1000	337	86	[9]
NiFe LDH/NiS	1000	325	60.1	[10]
Ni/Fe ₃ O ₄	1000	338	44	[11]
FeMoS@CoFe LDH FeMoS@CoFe LDH	500 1000	290 320	48.0	This work

Table S1. Comparison of OER activity data for various catalysts.

Catalysts	Current density	Overpotential	Dof	
Catalysis	(mA cm ⁻²)	(mV)	Kel.	
Ni-ZIF/Ni-B@NF	100	282	[12]	
FeMn-MOF/NF	100	382	[13]	
Pt/C	500	347	[14]	
A-NiCo LDH/NF	1000	381	[15]	
HC-MoS ₂ /Mo ₂ C	1000	441	[16]	
Sn-Ni(OH) ₂	1000	556	[8]	
Ni/Fe ₃ O ₄	1000	387	[11]	
Sn-Ni ₃ S ₂ /NF	1000	570	[17]	
FeMoS@CoFe LDH	100	229	This work	
FeMoS@CoFe LDH	500	319	This work	
FeMoS@CoFe LDH	1000	376	This work	

Table S2. Comparison of HER activity data for various catalysts.

Catalysts	Voltage (V)	Ref.	
MoNi ₄ /SSW SSW Rs-12h	1.978	[18]	
$CoMoS_x/NF \parallel CoMoS_x/NF$	1.89	[19]	
Co_4N - $CeO_2 \parallel CoMoS_x/NF$	1.99	[20]	
Pt/C IrO ₂	2.01	[19]	
(Ni-Fe)S _x /NiFe(OH) _y /NF (Ni-	2 1 2	[21]	
Fe)S _x /NiFe(OH) _y /NF	2.12	[= -]	
$Co_{0.8}Ru_{0.2}O_x@NC \parallel Co_{0.8}Ru_{0.2}O_x@NC$	1.86	[22]	
$(Fe, Ni)_2 P @Ni_2 P \parallel (Fe, Ni)_2 P @Ni_2 P$	1.838	[23]	
NiCo(nf)-P NiCo(nf)-P	1.86	[24]	
NiCoP/NF NiCoP/NF	1.83	[25]	
NF-CH-O NF-CH-O	1.877	[26]	
FeMoS@CoFe LDH FeMoS@CoFe LDH	1.79	This work	

Table S3. Comparison of water splitting performance of FeMoS@CoFe LDH with other electrocatalysts at the current density of 500 mA cm⁻² in 1 M KOH.

Video S1. The combination of capillary-fed electrolysis cell and drainage device.

Video S2. Solar-to-water electrolysis system.

Video S3. Wind-to-water electrolysis system.

References

1. L. Yu, I. K. Mishra, Y. Xie, H. Zhou, J. Sun, J. Zhou, Y. Ni, D. Luo, F. Yu, Y. Yu, S. Chen and Z. Ren, *Nano Energy*, 2018, **53**, 492-500.

 L. Yu, L. Wu, S. Song, B. McElhenny, F. Zhang, S. Chen and Z. Ren, ACS Energy Lett, 2020, 5, (8), 2681-2689.

3. Q. Ji, Y. Kong, H. Tan, H. Duan, N. Li, B. Tang, Y. Wang, S. Feng, L. Lv and C. Wang, *ACS Catal*, 2022, **12**, (8), 4318-4326.

4. Y. Wang, G. Qian, Q. Xu, H. Zhang, F. Shen, L. Luo and S. Yin, *Appl Catal B*, 2021, **286**, 119881.

5. G. Qian, J. Chen, L. Luo, T. Yu, Y. Wang, W. Jiang, Q. Xu, S. Feng and S. Yin, *ACS Sustainable Chem Eng*, 2020, **8**, (32), 12063-12071.

6. G. Qian, J. Chen, T. Yu, L. Luo and S. Yin, Nano-Micro Lett, 2021, 13, (1), 77.

7. G. Qian, J. Chen, T. Yu, J. Liu, L. Luo and S. Yin, Nano-Micro Lett, 2022, 14, 1-15.

8. J. Jian, X. Kou, H. Wang, L. Chang, L. Zhang, S. Gao, Y. Xu and H. Yuan, *ACS Appl Mater Interfaces*, 2021, **13**, (36), 42861-42869.

9. L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo, A. Karim, S. Chen and Z. Ren, *Adv Funct Mater*, 2021, **31**, (1), 2006484.

10. Q. Wen, K. Yang, D. Huang, G. Cheng, X. Ai, Y. Liu, J. Fang, H. Li, L. Yu and T. Zhai, *Adv Energy Mater*, 2021, **11**, (46), 2102353.

W. Xu, W. Zhong, C. Yang, R. Zhao, J. Wu, X. Li and N. Yang, *J Energy Chem*, 2022, 73, 330-338.

12. H. Xu, B. Fei, G. Cai, Y. Ha, J. Liu, H. Jia, J. Zhang, M. Liu and R. Wu, *Adv Energy Mater*, 2020, **10**, (3), 1902714.

13. H. Guan, N. Wang, X. Feng, S. Bian, W. Li and Y. Chen, *Colloids Surf A*, 2021, **624**, 126596.

14. C. Yang, W. Zhong, K. Shen, Q. Zhang, R. Zhao, H. Xiang, J. Wu, X. Li and N. Yang, *Adv Energy Mater*, 2022, **12**, (16), 2200077.

15. H. Yang, Z. Chen, P. Guo, B. Fei and R. Wu, Appl Catal B, 2020, 261, 118240.

16. C. Zhang, Y. Luo, J. Tan, Q. Yu, F. Yang, Z. Zhang, L. Yang, H. Cheng and B. Liu, Nat

Commun, 2020, 11, (1), 3724.

17. J. Jian, L. Yuan, H. Qi, X. Sun, L. Zhang, H. Li, H. Yuan and S. Feng, *ACS Appl Mater Interfaces*, 2018, **10**, (47), 40568-40576.

18. V. R. Jothi, K. Karuppasamy, T. Maiyalagan, H. Rajan, C. Jung and S. C. Yi, *Adv Energy Mater*, 2020, **10**, (24), 1904020.

19. X. Shan, J. Liu, H. Mu, Y. Xiao, B. Mei, W. Liu, G. Lin, Z. Jiang, L. Wen and L. Jiang, *Angew Chem Int Ed*, 2020, **59**, (4), 1659-1665.

20. H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C. P. Li and M. Du, *Adv Funct Mater*, 2020, **30**, (32), 1910596.

21. Q. Che, Q. Li, Y. Tan, X. Chen, X. Xu and Y. Chen, Appl Catal B, 2019, 246, 337-348.

Q. Yang, Y. Cui, Q. Li, J. Cai, D. Wang and L. Feng, ACS Sustainable Chem Eng, 2020,
 8, (32), 12089-12099.

23. Y. Li, X. Yu, J. Gao and Y. Ma, Chem Eng J, 2023, 470, 144373.

Z. Xu, C. Yeh, J. Chen, J. T. Lin, K. Ho and R. Y. Lin, *ACS Sustainable Chem Eng*, 2022, 10, (35), 11577-11586.

H. Hu, Y. Li, Y. Shao, K. Li, G. Deng, C. Wang and Y. Feng, *J Power Sources*, 2021,
 484, 229269.

26. Y. Qiu, Z. Liu, X. Zhang, A. Sun and J. Liu, J Colloid Interface Sci, 2022, 625, 50-58.